Skip to main content

Improvement of Solid Through Improved Solutions and Gels (2): The Other Methods

  • Chapter
  • First Online:
Nanoliquid Processes for Electronic Devices
  • 242 Accesses

Abstract

In Chap. 12, we demonstrated that solid films with good properties can be formed at lower temperatures through modification of the solution composition by adding the third element of amines. Here, in Sect. 13.1 we introduce another option: solution amelioration. That is, solvothermal treatment of the solution was found to be very effective to ameliorate the solution, imparting it with improved processability for solidification. We refer to this treatment as “solvothermal synthesis” of a precursor solution. In this section, we introduce the effects of solvothermal synthesis on the insulating properties of LaZrO films. Detailed structural analyses of the precursor solutions, dried gels, and annealed solids were extensively carried out. The analytical results show a substantial improvement of properties achieved by solvothermal treatment of solutions. We confirmed that the structural modification of metal–organic precursors in solution enhanced the processability of the solution in solidification, resulting in a final solid oxide with good properties and a good crystal structure.

We observed that hybrid clusters with inorganic cores coordinated by organic ligands were the typical metal–organic precursor structures. Structural unification of the cluster core was achieved by the solvothermal treatment. Greater uniformity of clusters facilitates the formation of a higher quality solid. The thus-made solid maintains features similar to those of the core structure of the cluster, even after annealing at high temperatures. These results demonstrate the importance of designing and ameliorating the cluster structure in solution.

As a novel method for producing device-quality oxide semiconducting thin film at temperature as low as 200 °C, solution combustion synthesis (SCS) was developed by Kim MG, Kanatzidis MG, Facchetti A, Marks TJ, Nat Mater 10:382, 2011. In Sect. 13.2, the SCS method is introduced. The self-generated heat of combustion synthesis provides a localized energy supply, eliminating the need for high, externally applied processing temperatures. In addition, the atomically local oxidizer supply can efficiently remove organic impurities without coke formation. Here, a redox-based combustion synthetic approach is applied to indium tin oxide (ITO) thin film using acetylacetone as a fuel and metal nitrate as oxidizer (Tue PT, Inoue S, Takamura Y, Shimoda T, Appl Phys A Mater Sci Process 122(6):1–8, 2016). The structural and electrical properties of SCS-ITO precursor solution and thin films were systematically investigated with changes in tin concentration, indium metal precursors, and annealing conditions such as temperature, time, and ambient. After that, the optimized SCS-ITO thin film was applied for source/drain (S/D) electrodes in a total solution-processed amorphous oxide TFT. The performance and stability of the SCS-ITO TFT were evaluated and compared to those of the TFT with sputtered-ITO S/D electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.G. Kim, M.G. Kanatzidis, A. Facchetti, T.J. Marks, Nat. Mater. 10, 382 (2011)

    Article  CAS  Google Scholar 

  2. P.T. Tue, S. Inoue, Y. Takamura, T. Shimoda, Appl. Phys. A Mater. Sci. Process. 122(6), 1–8 (2016)

    Article  CAS  Google Scholar 

  3. P. Tue, J. Li, T. Miyasako, S. Inoue, T. Shimoda, Low-temperature all-solution-derived amorphous oxide thin-film transistors. IEEE Electron Device Lett. 34, 1536–1538 (2013)

    Article  CAS  Google Scholar 

  4. T. Kaneda et al., Rheology printing for metal-oxide patterns and devices. J. Mater. Chem. C 2, 40–49 (2014)

    Article  CAS  Google Scholar 

  5. P. Tue et al., High-performance solution-processed ZrInZnO thin-film transistors. IEEE Trans. Electron Devices 60, 320–326 (2013)

    Article  CAS  Google Scholar 

  6. J. Murakami, D. Li, S. Hirose, T. Kohara, Shimoda, solution processing of highly conductive ruthenium and ruthenium oxide thin films from rutheniumamine complexes. J. Mater. Chem. C 3, 4490–4499 (2015)

    Article  CAS  Google Scholar 

  7. Y. Murakami, J. Li, T. Shimoda, Highly conductive ruthenium oxide thin films by a lowtemperature solution process and green laser annealing. Mater. Lett. 152, 121–124 (2015)

    Article  CAS  Google Scholar 

  8. J. Li, P. Zhu, D. Hirose, S. Kohara, T. Shimoda, Hybrid cluster precursors of the LaZrO insulator for transistors: Properties of high temperature processed films and structures of solutions, gels, and solids. Sci. Rep. 6, 29682 (2016)

    Google Scholar 

  9. P. Lunkenheimer et al., Origin of apparent colossal dielectric constants. Phys. Rev. B 66, 052105 (2002)

    Article  Google Scholar 

  10. H.-J. Deiseroth, H.K. Müller-Buschbaum, Ein Beitrag zur Pyrochlorstruktur an La2Zr2O7. Z. Anorg. Allg. Chem. 375, 152–156 (1970)

    Article  CAS  Google Scholar 

  11. C. Loogn, J. Richardson, M. Ozawa, M. Kimura, Crystal structure and short-range oxygen defects in La-modified and Ndmodified ZrO2. J. Alloys Compounds 207, 174–177 (1994)

    Google Scholar 

  12. M. Puchberger et al., Can the clusters Zr6O4(OH)4(OOCR)12 and [Zr6O4(OH)4(OOCR)12]2 be converted into each other? Eur. J. Inorg. Chem. 16, 3283–3293 (2006)

    Article  Google Scholar 

  13. G. Kickelbick et al., Formation of organically surface-modified metal oxo clusters from carboxylic acids and metal alkoxides: A mechanistic study. J. Chem. Soc. Dalton Trans. 20, 3892–3898 (2002)

    Article  Google Scholar 

  14. R. Mos et al., Synthesis, crystal structure and thermal decomposition of Zr6O4(OH)4(CH3CH2COO)12. J. Analytical Appl. Pyrolysis 97, 137–142 (2012)

    Article  CAS  Google Scholar 

  15. C. Sanchez, M. In, Molecular design of alkoxide precursors for the synthesis of hybrid organic inorganic gels. J. Non-Cryst. Solids 147, 1–12 (1992)

    Article  Google Scholar 

  16. S. Gross, M. Bauer, EXAFS as powerful analytical tool for the investigation of organic-inorganic hybrid materials. Adv. Funct. Mater. 20, 4026–4047 (2010)

    Article  CAS  Google Scholar 

  17. P. Li, I.W. Chen, J.E. Penner-Hahn, X-ray-absorption studies of zirconia polymorphs: I. characteristic structures. Phys. Rev. B 48, 10063 (1993)

    Article  CAS  Google Scholar 

  18. P. Zhu, J. Li, P.T. Tue, S. Inoue, T. Shimoda, Hybrid cluster precursors of the LaZrO insulator for transistors: Lowering the processing temperature. Sci. Rep. 8, 5934 (2018). https://doi.org/10.1038/s41598-018-24292-4

    Article  CAS  Google Scholar 

  19. L. Patiny, A. Borel, ChemCalc: A building block for tomorrow’s chemical infrastructure. J. Chem. Inf. Model. 53, 1223–1228 (2013)

    Article  CAS  Google Scholar 

  20. B. Ravel, M.A.T.H.E.N.A. Newville, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiation 12, 537–541 (2005)

    Article  CAS  Google Scholar 

  21. U. Martin, H. Boysen, F. Frey, Neutron powder investigation of tetragonal and cubic stabilized zirconia, TZP and CSZ, at temperatures up to 1400 K. Acta Crystallogr. B 49, 403–413 (1993)

    Article  Google Scholar 

  22. E. Terzini, P. Thilakan, C. Minarini, Mater. Sci. Eng. B 77, 110 (2000)

    Article  Google Scholar 

  23. P.K. Biswas, A. De, K. Ortner, S. Korder, Mater. Lett. 58, 1540 (2000)

    Article  Google Scholar 

  24. J. Liu, D. Wu, S. Zeng, J. Mater. Process. Technol. 209, 3943 (2009)

    Article  CAS  Google Scholar 

  25. Q. Wei, H. Zheng, Y. Huang, Sol. Energy Mater. Sol. Cells 68, 383 (2001)

    Article  CAS  Google Scholar 

  26. D. Raoufi, A. Kiasatpour, H.R. Fallah, A.S.H. Rozatian, Appl. Surf. Sci. 253, 9085 (2007)

    Article  CAS  Google Scholar 

  27. T.S. Sathiaraj, Microelectron. J. 39, 1444 (2008)

    Article  CAS  Google Scholar 

  28. P.T. Tue, T. Miyasako, J. Li, H.T.C. Tu, S. Inoue, E. Tokumitsu, T. Shimoda, IEEE Trans. Electron Devices 60, 320 (2013)

    Article  CAS  Google Scholar 

  29. T.H. Jeong, S.J. Kim, D.H. Yoon, W.H. Jeong, D.L. Kim, H.S. Lim, H.J. Kim, Jpn. J. Appl. Phys. 50, 070202 (2011)

    Article  Google Scholar 

  30. A. Suresh, J.F. Muth, Appl. Phys. Lett. 92, 033502 (2008)

    Article  Google Scholar 

  31. R.B.M. Crossa, M.M. De Souza, Appl. Phys. Lett. 89, 263513 (2006)

    Article  Google Scholar 

  32. D. Gupta, S. Yoo, C. Lee, Y. Hong, IEEE Trans. Electron Devices 58, 1995 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shimoda, T. (2019). Improvement of Solid Through Improved Solutions and Gels (2): The Other Methods. In: Nanoliquid Processes for Electronic Devices. Springer, Singapore. https://doi.org/10.1007/978-981-13-2953-1_13

Download citation

Publish with us

Policies and ethics