Skip to main content

Improvement of Solid Through Improved Solutions and Gels (1): Utilization of Reduction Agent and Reduced Atmosphere

  • Chapter
  • First Online:
Nanoliquid Processes for Electronic Devices
  • 262 Accesses

Abstract

In Sect. 12.1, a novel low-temperature crystallization path for perovskite lead zirconate titanate (PZT) from solution is reported. The modification of a PZT solution with monoethanolamine (MEA) resulted in a change in the crystallization behavior. MEA was strongly coordinated to the metal ions, resulting in reduction of Pb2+ into Pb0 because of a reducing environment at 200–300 °C. Nanoscopic separations of Pb0 were later transformed into uniformly distributed PbO nanocrystals and clusters in the amorphous Zr/Ti–O matrix and finally crystallized into perovskite at 400–500 °C. On the other hand, pyrochlore phase appeared in the conventional crystallization process. The avoidance of pyrochlore formation is a key for the low-temperature crystallization of perovskite. X-ray absorption fine structure (XAFS) analysis was performed to reveal the structures in solutions and amorphous phases.

In Sect. 12.2, a new reaction path for the low-temperature crystallization of device-quality PZT films was described. The essential aspect of this path is to circumvent pyrochlore formation at approximately 300 °C as the temperature is increased to 400 °C. In this approach, MEA was not used. Pb2+ was reduced to Pb0 by maintaining the presence of sufficient carbon via pyrolysis at 210 °C, which is well below the temperature for pyrochlore formation. This process led to insufficient Pb2+ in the film to form pyrochlore. The films were successfully crystallized onto metals and metal/oxide hybrids at 400–450 °C.

In Sect. 12.3, the same method as in Sect. 12.1 was used to form highly conductive ruthenium metal (Ru0) and ruthenium oxide (RuO2) films. Those solutions were prepared from ruthenium(III) nitrosyl acetate and amines. Ru0 and RuO2 thin films were formed when annealed under an inert atmosphere (nitrogen or vacuum) and under an oxygen atmosphere, respectively. The effects of different amine structures were compared, and alkanolamine and amino acids were found to produce Ru0 films of higher quality than films formed by alkyl amines. These results were correlated with the structures of ruthenium complexes. The resistivity values of Ru0 and RuO2 thin films prepared from ruthenium–alkanolamine complexes were 2.1 × 10−5 and 4.3 × 10−4 Ω cm, respectively, similar to those of vacuum-processed Ru0 and RuO2 ones. The Ru0 film showed high stability against oxidation during further annealing in oxygen, even at nanometer thickness (e.g., 25 nm).

In Sect. 12.4, highly conductive RuO2 thin films were prepared by a low-temperature solution process combined with green laser annealing (GLA). This process enabled the production of RuO2 films at a relatively low temperature of 250 °C. GLA led to effective sintering of the film, significantly improving its crystallinity and density, resulting in grain joining; consequently, the conductivity was dramatically increased by one order of magnitude or more. The RuO2 thin films exhibited a low resistivity (e.g., 7.6 × 10−5 Ωcm for a 40-nm-thick film), which was approximately only two times greater than that of single-crystalline RuO2. Such resistivity has not previously been achieved if thermal annealing soley used even at a temperature of 800 °C and is similar to or lower than that of vacuum-deposited RuO2 films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Kameda, J. Li, D.H. Chi, A. Sugiyama, K. Higasimine, T. Uruga, H. Tanida, K. Kato, T. Kaneda, T. Miyasako, E. Tokumitsu, T. Mitani, T. Shimoda, Crystallization of lead zirconate titanate without passing through pyrochlore by new solution process. J. Eur. Ceram. Soc. 32, 1667–1680 (2012)

    Article  CAS  Google Scholar 

  2. N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, et al., Ferroelectric thin films: review of materials, properties, and applications. J. Appl. Phys. 100, 051606 (2006)

    Article  Google Scholar 

  3. N. Izyumskaya, Y.I. Alivov, S.J. Cho, H. Morkoc¸, H. Lee, Y.S. Kang, Processing, structure, properties, and application of PZT thin films. Crit. Rev. Solid State Mater. Sci. 32, 111–202 (2007)

    Article  CAS  Google Scholar 

  4. R.W. Schwartz, T. Schneller, R. Waser, Chemical solution deposition of electronic oxide films. C. R. Chim. 7, 433–461 (2004)

    Article  CAS  Google Scholar 

  5. Y. Faheem, M. Shoaib, Sol–gel procession and characterization of phase-pure lead zirconate titanate nano-powders. J. Am. Ceram. Soc. 89, 2034–2037 (2006)

    Article  CAS  Google Scholar 

  6. N. Martin-Arbella, Í. Bretos, R. Jiménez, M.L. Calzada, R. Sirera, Photoactivation of sol–gel precursors for the low-temperature preparation of PbTiO3 ferroelectric thin films. J. Am. Ceram. Soc. 92, 396–403 (2011)

    Article  Google Scholar 

  7. N. Martin-Arbella, Í. Bretos, R. Jiménez, M.L. Calzada, R. Sirera, Metal complexes with N-methyldiethanolamine as new photosensitive precursors for the low-temperature preparation og ferroelectric thin films. J. Mater. Chem. 21, 9051–9059 (2011)

    Article  CAS  Google Scholar 

  8. V.S. Tiwari, A. Kumar, V.K. Wadhawan, D. Pandey, Kinetics of formation of the pyrochlore and perovskite phases in sol–gel derived lead zirconate titanate powder. J. Mater. Res. 13, 2170–2173 (1998)

    Article  CAS  Google Scholar 

  9. L.A. Bursill, K.G. Brooks, Crystallization of sol gel derived lead zirconate titanate thin films in argon and oxygen atmospheres. J. Appl. Phys. 75, 4501–4509 (1994)

    Article  CAS  Google Scholar 

  10. A.D. Polli, F.F. Lange, Pyrolysis of Pb(Zr0.5Ti0.5)O3 precursors: avoiding lead partitioning. J. Am. Ceram. Soc. 78, 3401–3404 (1995)

    Article  CAS  Google Scholar 

  11. T.I. Chang, S.C. Wang, C.P. Liu, C.F. Lin, J.L. Huang, Thermal behaviors and phase evolution of lead zirconate titanate prepared by sol–gel processing: the role of the pyrolysis time before calcination. J. Am. Ceram. Soc. 91, 2545–2552 (2008)

    Article  CAS  Google Scholar 

  12. J. Li, H. Kameda, B.N.Q. Trinh, T. Miyasako, P.T. Tue, E. Tokumitsu, et al., A low-temperature crystallization path for device-quality ferroelectric films. Appl. Phys. Lett. 97, 102905 (2010)

    Article  Google Scholar 

  13. K.D. Budd, S.K. Dey, D.A. Payne, Sol–gel processing of PbTiO3, PbZrO3, PZT, and PLZT thin films. Proc. Br Ceram. Soc. 36, 107–121 (1985)

    CAS  Google Scholar 

  14. M. Khanuja, S. Kala, B.R. Mehta, H. Sharma, S.M. Shivaprasad, B. Balamurgan, et al., XPS and AFM studies of monodispersed Pb/PbO core–shell nanostructures. J. Nanosci. Nanotechnol. 7, 2096–2100 (2007)

    Article  CAS  Google Scholar 

  15. G. Mountjoy, D.M. Pickup, R. Anderson, G.W. Wallidge, M.A. Holland, R.J. Newport, et al., Changes in the Zr environment in zirconiasilica xerogels with composition and heat treatment as revealed by Zr K-edge XANES and EXAFS. Phys. Chem. Chem. Phys. 2, 2455–2460 (2000)

    Article  CAS  Google Scholar 

  16. D. Peter, T.S. Ertel, H. Bertagnolli, EXAFS study of zirconium alkoxides as precursor in the sol–gel process: I. Structure investigation of the pure alkoxides. J. Sol–Gel Sci. Tech. 3, 91–99 (1994)

    Article  CAS  Google Scholar 

  17. M.P. Feth, A. Weber, R. Merkle, U. Reinöhl, H. Bertagnolli, Investigation of the crystallisation behaviour of lead titanate (PT), lead zirconate (PZ) and lead zirconate titanate (PZT) by EXAFS-spectroscopy and X-ray diffraction. J. Sol–Gel Sci. Tech. 27, 193–204 (2003)

    Article  CAS  Google Scholar 

  18. T. Yamamoto, What is the origin of pre-edge peaks in K-edge XANES spectra of 3d transition metals: electric dipole or quadrupole? Adv. X-Ray Chem. Anal. Jpn. 38, 45–65 (2007)

    CAS  Google Scholar 

  19. R.V. Vedrinskii, V.L. Kraizman, A.A. Novakovich, P.V. Demekhin, S.V. Urazhdin, Pre-edge fine structure of the 3d atom K X-ray absorption spectra and quantitative atomic structure determinations for ferroelectric perovskite structure crystals. J. Phys. Condens. Matter. 10, 9561–9580 (1998)

    Article  CAS  Google Scholar 

  20. F. Babonneau, S. Doeuff, A. Leaustic, C. Sanchez, C. Cartier, M. Verdaguer, XANES and EXAFS study of titanium alkoxides. Inorg. Chem. 27, 3166–3172 (1988)

    Article  CAS  Google Scholar 

  21. E.R. Camargo, E. Longo, E.R. Leite, V.R. Mastelaro, Phase evolution of lead titanate from its amorphous precursor synthesized by the OPM wet-chemical route. J. Solid State Chem. 177, 1994–2001 (2004)

    Article  CAS  Google Scholar 

  22. Y.H. Yu, T. Tyliszczak, A.P. Hitchcock, Pb L3 EXAFS and near-edge studies of lead metal and lead oxides. J. Phys. Chem. Solids 51, 445–451 (1990)

    Article  CAS  Google Scholar 

  23. S.S. Sengupta, L. Ma, D.L. Adler, D.A. Payne, Extended X-ray absorption fine structure determination of local structure in sol–gel-derived lead titanate, lead zirconate, and lead zirconate titanate. J. Mater. Res. 10, 1345–1348 (1995)

    Article  CAS  Google Scholar 

  24. W.J. Moore, L. Pauling, The crystal structures of the tetragonal monoxides of lead, tin, palladium, and platinum. J. Am. Chem. Soc. 63, 1392–1394 (1941)

    Article  CAS  Google Scholar 

  25. J.H. Lee, Y.M. Chiang, Pyrochlore-perovskite phase transformation in highly homogeneous (Pb,La)(Zr,Sn,Ti)O3 powders. J. Mater. Chem. 9, 3107–3111 (1999)

    Article  CAS  Google Scholar 

  26. T.I. Chang, J.L. Huang, H.P. Lin, S.C. Wang, H.H. Lu, L. Wu, et al., Effect of drying temperature on structure, phase transformation of sol–gel-derived lead zirconate titanate powders. J. Alloys Compd. 414, 224–229 (2006)

    Article  CAS  Google Scholar 

  27. D.L. Bellac, J.M. Kiat, P. Garnier, H. Moudden, P. Sciau, P.A. Buffat, et al., Mechanism of the incommensurate phase in lead oxide -PbO. Phys. Rev. B 52, 13184–13194 (1995)

    Article  Google Scholar 

  28. S.K. Pradhan, M. Gateshki, M. Niederberger, Y. Ren, V. Petkov, PbZr1−xTixO3 by soft synthesis: structural aspects. Phys. Rev. B 76, 014114 (2007)

    Article  Google Scholar 

  29. D.J. Teff, J.C. Huffman, K.G. Caulton, Heterometallic alkoxides of zirconium with tin(II) or lead(II). Inorg. Chem. 35, 2981–2987 (1996)

    Article  CAS  Google Scholar 

  30. S. Daniele, R. Papiernik, L.G.H. Pfalzgraf, Single-source precursors of lead titanate: synthesis, molecular structure and reactivity of Pb2Ti2(μ4-O)(μ3-O-i-Pr)2(μ-O-i-Pr)4(O-i-Pr)4. Inorg. Chem. 34, 628–632 (1995)

    Article  CAS  Google Scholar 

  31. K. Maki, N. Soyama, S. Mori, K. Ogi, Integr. Ferroelectr. 30, 193 (2000)

    Article  CAS  Google Scholar 

  32. J. Perez, P.M. Vilarinho, A.L. Kholkin, Thin Solid Films 449, 20 (2004)

    Article  CAS  Google Scholar 

  33. K. Maki, B.T. Liu, Y. So, H. Vu, R. Ramesh, J. Finder, Z. Yu, R. Droopad, K. Eisenbeiser, Integr. Ferroelectr. 52, 19 (2003)

    Article  CAS  Google Scholar 

  34. M. Mandeljc, M. Kosec, B. Malic, Z. Samardzija, Integr. Ferroelectr. 36, 163 (2001)

    Article  CAS  Google Scholar 

  35. Z.J. Wang, H. Kokawa, H. Takizawa, M. Ichiki, R. Maeda, Appl. Phys. Lett. 86, 212903 (2005)

    Article  Google Scholar 

  36. A. Bhaskar, T.H. Chang, H.Y. Chang, S.Y. Cheng, Thin Solid Films 515, 2891 (2007)

    Article  CAS  Google Scholar 

  37. X.D. Zhang, X.J. Meng, J.L. Sun, T. Lin, J.H. Chu, Appl. Phys. Lett. 86, 252902 (2005)

    Article  Google Scholar 

  38. X.D. Zhang, X.J. Meng, J.L. Sun, T. Lin, J.H. Ma, J.H. Chu, N. Wang, J. Dho, J. Mater. Res. 23, 2846 (2008)

    Article  CAS  Google Scholar 

  39. M.L. Calzada, I. Bretos, R. Jiménez, H. Guillon, L. Pardo, Adv. Mater. Weinheim, Ger. 16, 1620 (2004)

    Article  CAS  Google Scholar 

  40. G. Garnweitner, J. Hentschel, M. Antonietti, M. Niederberger, Chem. Mater. 17, 4594 (2005)

    Article  CAS  Google Scholar 

  41. T. Morita, Y. Cho, Appl. Phys. Lett. 85, 2331 (2004)

    Article  CAS  Google Scholar 

  42. See supplementary material at https://doi.org/10.1063/1.3486462 for the details of experimental methods

    Article  Google Scholar 

  43. A. Seifert, A. Vojta, J.S. Speck, F.F. Lange, J. Mater. Res. 11, 1470 (1996)

    Article  CAS  Google Scholar 

  44. M.C. Robinson, D.J. Morris, P.D. Hayenga, J.H. Cho, C.D. Richards, R.F. Richards, D.F. Bahr, Appl. Phys. A Mater. Sci. Proc. 852, 135 (2006)

    Article  Google Scholar 

  45. X.J. Lou, J. Appl. Phys. 105, 024101 (2009)

    Article  Google Scholar 

  46. H.N. Al-Shareef, O. Auciello, A.I. Kingon, J. Appl. Phys. 77, 2146 (1995)

    Article  CAS  Google Scholar 

  47. Y. Murakami, J. Li, D. Hirose, S. Kohara, T. Shimoda, J. Mater. Chem. C 3, 4490–4499 (2015)

    Article  CAS  Google Scholar 

  48. R. Methaapanon, S.M. Geyer, S. Brennan, S.F. Bent, Chem. Mater. 25, 3458–3463 (2013)

    Article  CAS  Google Scholar 

  49. Y.C. Choi, B.S. Lee, Jpn. J. Appl. Phys. 38, 4876–4880 (1999)

    Article  CAS  Google Scholar 

  50. T.E. Hong, K.Y. Mun, S.K. Choi, J.Y. Park, S.H. Kim, T. Cheon, W.K. Kim, B.Y. Lim, S. Kim, Thin Solid Films 520, 6100–6105 (2012)

    Article  CAS  Google Scholar 

  51. S. Bhaskar, P.S. Dobal, S.B. Majumder, R.S. Katiyay, J. Appl. Phys. 89, 2987–2992 (2001)

    Article  CAS  Google Scholar 

  52. H. Over, Chem. Rev. 112, 3356–3426 (2012)

    Article  CAS  Google Scholar 

  53. M.M. Steeves, D. Deniz, R.J. Lad, Appl. Phys. Lett. 96, 142103 (2010)

    Article  Google Scholar 

  54. Y.K.V. Reddy, D. Mergel, J. Mater. Sci. Mater. Electron. 17, 1029–1034 (2006)

    Article  CAS  Google Scholar 

  55. D.J. Yun, H. Ra, S.B. Jo, W. Maeng, S. Lee, S. Park, J.W. Jang, K. Cho, S.W. Rhee, ACS Appl. Mater. Interfaces 4, 4588–4594 (2012)

    Article  CAS  Google Scholar 

  56. J.H. Han, S.W. Lee, S.K. Kim, S. Han, C.S. Hwang, C. Dussarrat, J. Gatineau, Chem. Mater. 22, 5700–5706 (2010)

    Article  CAS  Google Scholar 

  57. J.H. Han, S.W. Lee, S.K. Kim, S. Han, W. Lee, C.S. Hwang, Chem. Mater. 24, 1407–1414 (2012)

    Article  CAS  Google Scholar 

  58. A. Maniwa, H. Chiba, K. Kawano, N. Koiso, H. Oike, T. Furukawa, K. Tada, J. Vac. Sci. Technol. A 33, 01A133 (2015)

    Article  Google Scholar 

  59. M.M. Minjauw, J. Dendooven, B. Capon, M. Schaekers, C. Detavernier, J. Mater. Chem. C 3, 132–137 (2015)

    Article  CAS  Google Scholar 

  60. S.K. Park, R. Kanjolia, J. Anthis, R. Odedra, N. Boag, L. Wielunski, Y.J. Chabal, Chem. Mater. 22, 4867–4878 (2010)

    Article  CAS  Google Scholar 

  61. J.Y. Park, S. Yeo, T. Cheon, S.H. Kim, M.K. Kim, H. Kim, T.E. Hong, D.J. Lee, J. Alloys Compd. 610, 529–539 (2014)

    Article  CAS  Google Scholar 

  62. J.F. Tressler, K. Watanabe, M. Tanaka, J. Am. Ceram. Soc. 79, 525–529 (1996)

    Article  CAS  Google Scholar 

  63. Y. Hara, S. Rengakuji, Y. Nakamura, A. Shinagawa, Electrochemistry 70, 13–17 (2002)

    CAS  Google Scholar 

  64. T. Kaneda, D. Hirose, T. Miyasako, P.T. Tue, Y. Murakami, S. Kohara, J. Li, T. Mitani, E. Tokumitsu, T. Shimoda, J. Mater. Chem. C 2, 40–49 (2014)

    Article  CAS  Google Scholar 

  65. Y. Murakami, P.T. Tue, H. Tsukada, J. Li, T. Shimoda, Proceedings of the 20th International Display Workshops (IDW’13) (2013), pp. 1573–1576

    Google Scholar 

  66. H. Kameda, J. Li, D.H. Chi, A. Sugiyama, K. Higashimine, T. Uruga, H. Tanida, K. Kato, T. Kaneda, T. Miyasako, E. Tokumitsu, T. Mitani, T. Shimoda, J. Eur. Ceram. Soc. 32, 1667–1680 (2012)

    Article  CAS  Google Scholar 

  67. P. Ghosh, M. Tanemura, T. Soga, M. Zamri, T. Jimbo, Solid State Commun. 147, 15–19 (2008)

    Article  CAS  Google Scholar 

  68. S.A. Fouda, G.L. Rempel, Inorg. Chem. 18, 1–8 (1979)

    Article  CAS  Google Scholar 

  69. A. Inatomi, M. Abe, Y. Hisaeda, Eur. J. Inorg. Chem. 2009, 4830–4836 (2009)

    Article  Google Scholar 

  70. H.E. Toma, A.D.P. Alexiou, S. Dovidauskas, Eur. J. Inorg. Chem. 2002, 3010–3017 (2002)

    Article  Google Scholar 

  71. M. Barth, X. Ka¨stele, P. Klu¨fers, Eur. J. Inorg. Chem. 2005, 1353–1359 (2005)

    Article  Google Scholar 

  72. W.H. Baur, A.A. Khan, Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 27, 2133–2139 (1971)

    Article  CAS  Google Scholar 

  73. D.J. Yun, S. Lee, K. Yong, S.W. Rhee, Appl. Phys. Lett. 97, 073303 (2010)

    Article  Google Scholar 

  74. Y. Murakami, J. Li, T. Shimoda, Highly conductive ruthenium oxide thin films by a low-temperature solution process and green laser annealing. Mater. Lett. 152, 121–124 (2015)

    Article  CAS  Google Scholar 

  75. M. Fujii, Y. Ishikawa, R. Ishihara, J.V.D. Cingel, M.R.T. Mofrad, M. Horita, et al., Low temperature high-mobility InZnO thin-film transistors fabricated by excimer laser annealing. Appl. Phys. Lett. 102, 122107 (2013)

    Article  Google Scholar 

  76. Y. Sugawara, Y. Uraoka, H. Yano, T. Hatayama, T. Fuyuki, A. Mimura, A high-speed high-sensitivity silicon lateral trench photodetector. IEEE Electron Device Lett. 28, 395–397 (2007)

    Article  CAS  Google Scholar 

  77. J. Jiang, S. Kuroki, K. Kotani, T. Ito, Ferroelectric properties of lead zirconate titanate thin film on glass substrate crystallized by continuous-wave green laser annealing. Jpn. J. Appl. Phys. 49, 04DH14 (2010)

    Google Scholar 

  78. D.F Foust, J.W. Rose, E.W. Balch, Method of forming ruthenium oxide films. US Patent US 6,417,062 (2002)

    Google Scholar 

  79. W.D. Ryden, A.W. Lawson, C.C. Sartain, Electrical transport properties of IrO2 and RuO2. Phys. Rev. B 1, 1494–1500 (1970)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shimoda, T. (2019). Improvement of Solid Through Improved Solutions and Gels (1): Utilization of Reduction Agent and Reduced Atmosphere. In: Nanoliquid Processes for Electronic Devices. Springer, Singapore. https://doi.org/10.1007/978-981-13-2953-1_12

Download citation

Publish with us

Policies and ethics