Skip to main content

Introduction

  • Chapter
  • First Online:
Big-Bang Nucleosynthesis

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

  • 635 Accesses

Abstract

We make a brief historical review of the Big Bang model from A. Einstein to G. Gamow. Then we describe achievements of Big Bang nucleosynthesis (BBN) and introduce many studies on the accelerated expansion of the universe. Nonstandard approaches are also exemplified with neutrino degeneracy or a decaying cosmological term. We also introduce brane-world cosmology in a five-dimensional space-time and a modified Brans-Dicke (BD) model with a variable cosmological term. Finally, we describe the structure of the present text.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Einstein, A.: Die Grundlage der Allgemeinen Relativit\(\ddot {\mathrm {a}}\)tstheorie. Ann. der Phys. 49, 769–822 (1916). https://doi.org/10.1002/andp.19163540702

    Article  ADS  Google Scholar 

  2. Einstein, A.: Kosmologische Betrachtung zur Allgemeinen Relativit\(\ddot {\mathrm {a}}\)tstheorie. Sitz. Preuss. Akad. Wiss. 142–152 (1917)

    Google Scholar 

  3. Friedmann, A.: \(\ddot {\mathrm {U}}\)ber die Kr\(\ddot {\mathrm {u}}\)mmung des Raumes. Z. Phys. 10, 377–386 (1922). https://doi.org/10.1007/BF01332580

  4. Lema\(\hat {\mathrm {i}}\)tre, G.: Un Univers Homogene de Masse Constante et de Rayon Croissant Rendant Compte de la Vitesse Radiale des Nebuleuses Extra-galactiques. Ann. Soc. Sci. Brux. A 47, 49 (1927); English trans. A homogeneous universe of constant mass and increasing radius accounting for the radial velocity of extra-galactic nebulae. Mon. Not. R. Astron. Soc. 91, 483–490 (1931). https://doi.org/10.1093/mnras/91.5.483

    Article  ADS  Google Scholar 

  5. Lema\(\hat {\mathrm {i}}\)tre, G.: The beginning of the world from the point of view of quantum theory. Nature 127, 706 (1931). https://doi.org/10.1038/127706b0

    Article  ADS  Google Scholar 

  6. Tolman, R.C.: On the problem of the entropy of the universe as a whole. Phys. Rev. 37, 1639–1660 (1931). https://doi.org/10.1103/PhysRev.37.1639

    Article  ADS  Google Scholar 

  7. Robertson, H.P.: Kinematics and world-structure. Astrophys. J. 82, 284–301 (1935). https://doi.org/10.1086/143681

    Article  ADS  Google Scholar 

  8. Walker, A.G.: On Milne’s theory of world-structure. Proc. Lond. Math. Soc. Ser. 2 42, 90–127 (1937). https://doi.org/10.1112/plms/s2-42.1.90

    Article  Google Scholar 

  9. Hubble, E.: A relation between distance and radial velocity among extra-galactic nebulae. Proc. Nat. Acad. Sci. 15, 168–173 (1929). https://doi.org/10.1073/pnas.15.3.168

    Article  ADS  Google Scholar 

  10. Freedman, W.L., et al.: Final results from the hubble space telescope key project to measure the hubble constant. Astrophys. J. 553, 47–72 (2001). https://doi.org/10.1086/320638

    Article  ADS  Google Scholar 

  11. Alpher, R.A., Bethe, H., Gamow, G.: The origin of chemical elements. Phys. Rev. 73, 803–804 (1948). https://doi.org/10.1103/PhysRev.73.803

    Article  ADS  Google Scholar 

  12. Hayashi, C.: Proton-neutron concentration ratio in the expanding universe at the stages preceding the formation of the elements. Prog. Theory Phys. 5, 224–235 (1950). https://doi.org/10.1143/ptp/5.2.224

    Article  ADS  Google Scholar 

  13. Alpher, R.A., Herman, R.C.: Theory of the origin and relative abundance distribution of the elements. Rev. Mod. Phys. 22, 153–212 (1950). https://doi.org/10.1103/RevModPhys.22.153

    Article  ADS  Google Scholar 

  14. Penzias, A.A., Wilson, R.W.: A measurement of excess antenna temperature at 4080 Mc/s. Astrophys. J. 142, 419–421 (1965). https://doi.org/10.1086/148307

    Article  ADS  Google Scholar 

  15. Dicke, R.H., Peebles, P.J.E., Roll, P.G., Wilkinson, D.T.: Cosmic black-body radiation. Astrophys. J. 142, 414–419 (1865). https://doi.org/10.1086/148306

    Article  ADS  Google Scholar 

  16. Peebles, P.J.E.: Primeval helium abundance and the primeval fireball. Phys. Rev. Lett. 16, 410–413 (1966). https://doi.org/10.1103/PhysRevLett.16.410

    Article  ADS  Google Scholar 

  17. Peebles, P.J.E.: Primordial helium abundance and the primordial fireball II. Astrophys. J. 146, 542–552 (1966). https://doi.org/10.1086/148918

    Article  ADS  Google Scholar 

  18. Wagoner, R.V., Fowler, W.A., Hoyle, F.: On the synthesis of elements at very high temperatures. Astrophys. J. 148, 3–49 (1967). https://doi.org/10.1086/149126

    Article  ADS  Google Scholar 

  19. Mather, J.C., et al.: A preliminary measurement of the cosmic microwave background spectrum by the cosmic background explorer (COBE) satellite. Astrophys. J. 354, L37–L40 (1990). https://doi.org/10.1086/185717

    Article  ADS  Google Scholar 

  20. Spergel, D.N., et al.: First-year Wilkinson microwave anisotropy probe (WMAP) observations: determination of cosmological parameters. Astrophys. J. Suppl. 148, 175–194 (2003). https://doi.org/10.1086/377226

    Article  ADS  Google Scholar 

  21. Schramm, D.N., Wagoner, R.V.: Element production in the early universe. Ann. Rev. Nucl. Sci. 27, 37–74 (1977)

    Article  ADS  Google Scholar 

  22. Boesgaard, A.M., Steigman, G.: Big bang nucleosynthesis: theories and observations. Ann. Rev. Astron. Astrophys. 23, 319–378 (1985)

    Article  ADS  Google Scholar 

  23. Mathews, G.J., Kusakabe, M., Kajino, T.: Introduction to big bang nucleosynthesis and modern cosmology. Int. J. Mod. Phys. E 26, 1741001 (2017). https://doi.org/10.1142/S0218301317410014

    Article  ADS  Google Scholar 

  24. Rapetti, D., Allen, S., Amin, M., Blandford, R.: A kinematical approach to dark energy studies. Mon. Not. R. Astron. Soc. 375, 1510–1520 (2007). https://doi.org/10.1111/j.1365-2966.2006.11419.x

    Article  ADS  Google Scholar 

  25. Umezu, K.I., Ichiki, K., Kajino, T., Mathews, G.J., Nakamura, R., Yahiro, M.: Observational constraints on accelerating brane cosmology with exchange between the bulk and brane. Phys. Rev. D 73, 063527 (2006). https://doi.org/10.1103/PhysRevD.73.063527

    Article  ADS  Google Scholar 

  26. Alnes, H., Amarzguioui, M., Groen, O.: An inhomogeneous alternative to dark energy? Phys. Rev. D 73, 083519 (2006). https://doi.org/10.1103/PhysRevD.73.083519

    Article  ADS  Google Scholar 

  27. Romano, A.E.: Lemaitre-Tolman-Bondi universes as alternatives to dark energy: does positive averaged acceleration imply positive cosmic acceleration? Phys. Rev. D 75, 043509 (2007). https://doi.org/10.1103/PhysRevD.75.043509

    Article  ADS  MathSciNet  Google Scholar 

  28. Riess, A.G., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998). https://doi.org/10.1086/300499

    Article  ADS  Google Scholar 

  29. Perlmutter, S., et al.: Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999). https://doi.org/10.1086/307221

    Article  ADS  Google Scholar 

  30. Amanullah, R., et al.: Spectra and light curves of six type Ia supernovae at 0.511 < z < 1.12 and the Union2 compilation. Astrophys. J. 716, 712–738 (2010). https://doi.org/10.1088/0004-637X/716/1/712

    Article  ADS  Google Scholar 

  31. Brown, M.L., et al.: Improved measurements of the temperature and polarization of the CMB from QUaD. Astrophys. J. 705, 978–999 (2009). https://doi.org/10.1088/0004-637X/705/1/978

    Article  ADS  Google Scholar 

  32. Komatsu, E., et al.: Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. 192, 18 (2011). https://doi.org/10.1088/0067-0049/192/2/18

    Article  ADS  Google Scholar 

  33. Percival, W.J., et al.: Baryon acoustic oscillations in the sloan digital sky survey data release 7 galaxy sample. Mon. Not. R. Astron. Soc. 401, 2148–2168 (2010). https://doi.org/10.1111/j.1365-2966.2009.15812.x

    Article  ADS  Google Scholar 

  34. Silveira, V., Waga, I.: Cosmological properties of a class of Λ decaying cosmologies. Phys. Rev. D 56, 4625–4632 (1997). https://doi.org/10.1103/PhysRevD.56.4625

    Article  ADS  Google Scholar 

  35. Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1–23 (1989). https://doi.org/10.1103/RevModPhys.61.1

    Article  ADS  MathSciNet  Google Scholar 

  36. Huterer, D., Turner, M.S.: Prospects for probing the dark energy via supernova distance measurements. Phys. Rev. D 60, 081301 (1999). https://doi.org/10.1103/PhysRevD.60.081301

    Article  ADS  Google Scholar 

  37. Wagoner, R.V.: Scalar-tensor theory and gravitational waves. Phys. Rev. D 1, 3209–3216 (1970). https://doi.org/10.1103/PhysRevD.1.3209

    Article  ADS  Google Scholar 

  38. Endo, M., Fukui, T.: The cosmological term and a modified Brans-Dicke cosmology. Gen. Rel. Grav. 8, 833–839 (1977). https://doi.org/10.1007/BF00759587

    Article  ADS  Google Scholar 

  39. Kimura, K., Hashimoto, M., Sakoda, M., Arai, K.: Effects on the temperatures of a variable cosmological term after recombination. Astrophys. J. 561, L19–L22 (2001). https://doi.org/10.1086/324569

    Article  ADS  Google Scholar 

  40. Hashimoto, M., Kamikawa, T., Arai, K.: Effects of a decaying cosmological term on the formation of molecules and first objects. Astrophys. J. 598, 13–19 (2003). https://doi.org/10.1086/378882

    Article  ADS  Google Scholar 

  41. Sol\({\grave {\mathrm {a}}}\), J., \({\check {\mathrm {S}}}\)tefan\({\check {\mathrm {c}}}\)i\({\acute {\mathrm {c}}}\), H.: Dynamical dark energy or variable cosmological parameters? Mod. Phys. Lett. A 21, 479–494 (2006). https://doi.org/10.1142/S0217732306019554

    Article  ADS  Google Scholar 

  42. Yahil, A., Beaudet, G.: Big-bang nucleosynthesis with nonzero lepton numbers. Astrophys. J. 206, 26–29 (1976). https://doi.org/10.1086/154352

    Article  ADS  Google Scholar 

  43. Applegate, J.H., Hogan, C.J., Scherrer, R.J.: Cosmological baryon diffusion and nucleosynthesis. Phys. Rev. D 35, 1151–1160 (1987). https://doi.org/10.1103/PhysRevD.35.1151

    Article  ADS  Google Scholar 

  44. Terasawa, N., Sato, K.: Neutron diffusion and nucleosynthesis in the universe with isothermal fluctuations produced by Quark-Hadron phase transition. Phys. Rev. D 39, 2893–2900 (1989). https://doi.org/10.1103/PhysRevD.39.2893

    Article  ADS  Google Scholar 

  45. Nakamura, R., Hashimoto, M., Fujimoto, S., Sato, K.: Constraint on heavy element production in inhomogeneous big-bang nucleosynthesis from the light element observations. J. Astrophys. 2013, 587294 (2013). https://doi.org/10.1155/2013/587294

    Article  Google Scholar 

  46. Nakamura, R., Hashimoto, M., Ichimasa, R., Arai, K.: Big bang nucleosynthesis: constraints on nuclear reaction rates, neutrino degeneracy, inhomogeneous and Brans-Dicke models. Int. J. Mod. Phys. E 26, 1741003 (2017). https://doi.org/10.1142/S0218301317410038

    Article  ADS  Google Scholar 

  47. Freese, K., Adams, F.C., Frieman, J.A., Mottola, E.: Cosmology with decaying vacuum energy. Nucl. Phys. B 287, 797–814 (1987). https://doi.org/10.1016/0550-3213(87)90129-5

    Article  ADS  Google Scholar 

  48. Overduin, J.M., Wesson, P.S., Bowyer, S.: Constraints on vacuum decay from the microwave background. Astrophys. J. 404, 1–7 (1993). https://doi.org/10.1086/172253

    Article  ADS  Google Scholar 

  49. Puy, D.: Thermal balance in decaying Λ cosmologies. Astron. Astrophys. 422, 1–9 (2004). https://doi.org/10.1051/0004-6361:20040256

    Article  ADS  Google Scholar 

  50. Nakamura, R., Hashimoto, M., Ichiki, K.: Cosmic microwave background constraints on a decaying cosmological term related to the thermal evolution. Phys. Rev. D 77, 123511 (2008). https://doi.org/10.1103/PhysRevD.77.123511

    Article  ADS  Google Scholar 

  51. Lima, J.A.S.: Thermodynamics of decaying vacuum cosmologies. Phys. Rev. D 54, 2571–2577 (1996). https://doi.org/10.1103/PhysRevD.54.2571

    Article  ADS  Google Scholar 

  52. Jetzer, P., Puy, D., Signore, M., Tortora, C.: Limits on decaying dark energy density models from the CMB temperature-redshift relation. Gen. Relativ. Gravit. 43, 1083–1093 (2011). https://doi.org/10.1007/s10714-010-1091-4

    Article  ADS  MathSciNet  Google Scholar 

  53. Jetzer, P., Tortora, C.: Constraints from the CMB temperature and other common observational data-sets on variable dark energy density models. Phys. Rev. D 84, 043517 (2011). https://doi.org/10.1103/PhysRevD.84.043517

    Article  ADS  Google Scholar 

  54. Brans, C., Dicke, R.H.: Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124, 925–935 (1961). https://doi.org/10.1103/PhysRev.124.925

    Article  ADS  MathSciNet  Google Scholar 

  55. Arai, K., Hashimoto, M., Fukui, T.: Primordial nucleosynthesis in the Brans-Dicke theory with a variable cosmological term. Astron. Astrophys. 179, 17–22 (1987)

    ADS  Google Scholar 

  56. Etoh, T., Hashimoto, M., Arai, K., Fujimoto, S.: Age of the universe constrained from the primordial nucleosynthesis in the Brans-Dicke theory with a varying cosmological term. Astron. Astrophys. 325, 893–897 (1997)

    ADS  Google Scholar 

  57. Bertotti, B., Iess, L., Tortora, P.: A test of general relativity using radio links with the cassini spacecraft. Nature 425, 374–376 (2003). https://doi.org/10.1038/nature01997

    Article  ADS  Google Scholar 

  58. Berti, E., Buonanno, A., Will, C.M.: Estimating spinning binary parameters and testing alternative theories of gravity with LISA. Phys. Rev. D 71, 084025 (2005). https://doi.org/10.1103/PhysRevD.71.084025

    Article  ADS  Google Scholar 

  59. Nakamura, R., Hashimoto, M., Gamow, S., Arai, K.: Big-bang nucleosynthesis in a Brans-Dicke cosmology with a varying Λ term related to WMAP. Astron. Astrophys. 448, 23–27 (2006). https://doi.org/10.1051/0004-6361:20042618

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hashimoto, Ma., Nakamura, R., Thushari, E.P.B.A., Arai, K. (2018). Introduction. In: Big-Bang Nucleosynthesis. SpringerBriefs in Physics. Springer, Singapore. https://doi.org/10.1007/978-981-13-2935-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2935-7_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2934-0

  • Online ISBN: 978-981-13-2935-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics