Skip to main content

A Review of Recent Advances in Identity Identification Technology Based on Biological Features

  • Conference paper
  • First Online:
Big Data (Big Data 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 945))

Included in the following conference series:

Abstract

With the development of social informatization technology, the problems of individual information security are becoming serious. Nowadays identity identification has been required essentially in government and business field. In this paper, we summarize and analyze the identification principles and identification methods based on biometrics, including the present researches fingerprint, palmprint, iris, human face, vein, gait and signature, and make comparative analysis of the differences of the error recognition rate, stability, acquisition difficulty and counterfeiting degree. Finally, the prospects of biometric recognition technologies are discussed additionally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Glossary of Key Information Security Terms. Diane Publishing, Collingdale (2011)

    Google Scholar 

  2. Wang, Y., Hu, J.: Global ridge orientation modeling for partial fingerprint identification. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 72–87 (2011)

    Article  Google Scholar 

  3. Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer, London (2009). https://doi.org/10.1007/978-1-84882-254-2

    Book  MATH  Google Scholar 

  4. Pankanti, S., Prabhakar, S., Jain, A.K.: On the individuality of fingerprints. IEEE Trans. PAMl 24(8), 1010–1025 (2002)

    Article  Google Scholar 

  5. Kumar, A.: Contactless 3D Fingerprint Identification. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-67681-4

    Book  Google Scholar 

  6. Zhang, L.: Extraction of direction features in fingerprint image. Appl. Mech. Mater. 518, 316–319 (2014). Trans Tech Publications

    Article  Google Scholar 

  7. Maio, D., Maltoni, D.: Direct gray-scale minutiae detection in fingerprints. IEEE Trans. Pattern Anal. Mach. Intell. 19, 27–40 (1997)

    Article  Google Scholar 

  8. Hrechak, A.K., McHugh, J.A.: Automated fingerprint recognition using structural matching. Pattern Recognit. 23(8), 893–904 (1990). 27–40

    Article  Google Scholar 

  9. Lin, C., Kumar, A.: Contactless and partial 3D fingerprint recognition using multi-view deep representation. Pattern Recognit. 83, 314–327 (2018)

    Article  Google Scholar 

  10. Wu, X., Wang, K., Zhang, D.: Palmprint texture analysis using derivative of Gaussian filters. In: 2006 International Conference on Computational Intelligence and Security, vol. 1, pp. 751–754. IEEE (2006)

    Google Scholar 

  11. Li, W., Zhang, D., Zhang, L.: Three dimensional palmprint recognition. In: Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, October 2009, pp. 4847–4852 (2009)

    Google Scholar 

  12. Chan, H., Bledsoe, W.W.: A man-machine facial recognition system: some preliminary results. Panoramic Research Inc., Palo Alto, CA, USA1965 (1965)

    Google Scholar 

  13. Taigman, Y., Yang, M., Ranzato, M.A., et al.: DeepFace: closing the gap to human-level performance in face verification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1708 (2014)

    Google Scholar 

  14. Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. In: BMVC, vol. 1, no. 3, p. 6 (2015)

    Google Scholar 

  15. Sun, Y., Wang, X., Tang, X.: Deep learning face representation from predicting 10,000 classes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1891–1898 (2014)

    Google Scholar 

  16. Sun, Y., Chen, Y., Wang, X., et al.: Deep learning face representation by joint identification-verification. In: Advances in Neural Information Processing Systems, pp. 1988–1996 (2014)

    Google Scholar 

  17. Sun, Y., Liang, D., Wang, X., et al.: DeepID3: face recognition with very deep neural networks. arXiv preprint arXiv:1502.00873 (2015)

  18. Sun, Y., Wang, X., Tang, X.: Deeply learned face representations are sparse, selective, and robust. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2892–2900 (2015)

    Google Scholar 

  19. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  20. Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions. In: CVPR (2015)

    Google Scholar 

  21. Liu, J., Deng, Y., Bai, T., et al.: Targeting ultimate accuracy: face recognition via deep embedding. arXiv preprint arXiv:1506.07310 (2015)

  22. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  23. Wu, X., He, R., Sun, Z.: A lightened cnn for deep face representation. In: 2015 IEEE Conference on IEEE Computer Vision and Pattern Recognition (CVPR), p. 4 (2015)

    Google Scholar 

  24. Wen, Y., Zhang, K., Li, Z., Qiao, Y.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_31

    Chapter  Google Scholar 

  25. Wildes, R.: A system for automated iris recognition. In: Proceedings of the Second IEEE Workshop on Application of Computer Vision, pp. 121–128 (1994)

    Google Scholar 

  26. Boles, W.W., Boashash, B.: A human identification technique using images of the iris and wavelet transform. IEEE Trans. Signal Process. 46(4), 1185–1188 (1998)

    Article  Google Scholar 

  27. Daugman, J.: High confidence recognition of person by rapid video analysis of iris texture. In: Proceedings of European Convention on Security and Detection, pp. 244–251 (1995)

    Google Scholar 

  28. Rahman, N.A., Mohamed, A.S., Rasmy, M.E.: Retinal identification. In: Biomedical Engineering Conference. CIBEC 2008. Cairo International, pp. 1–4. IEEE (2008)

    Google Scholar 

  29. Borgen, H., Bours, P., Wolthusen, S.D.: Visible-spectrum biometric retina recognition. In: IIHMSP 2008 International Conference on Intelligent Information Hiding and Multimedia Signal Processing 2008, pp. 1056–1062. IEEE (2008)

    Google Scholar 

  30. Mariño, C., Penedo, M.G., Penas, M., et al.: Personal authentication using digital retinal images. Pattern Anal. Appl. 9(1), 21 (2006)

    Article  MathSciNet  Google Scholar 

  31. Lee, E.C., Jung, H., Kim, D.: New finger biometric method using near infrared imaging. Sensors 11(3), 2319–2333 (2011)

    Article  Google Scholar 

  32. Matsuda, Y., Miura, N., Nagasaka, A., et al.: Finger-vein authentication based on deformation-tolerant feature-point matching. Mach. Vis. Appl. 27(2), 237–250 (2016)

    Article  Google Scholar 

  33. Hu, H.: Enhanced gabor feature based classification using a regularized locally tensor discriminant model for multiview gait recognition. IEEE Trans. Circuits Syst. Video Technol. 23(7), 1274–1286 (2013)

    Article  Google Scholar 

  34. Lee, H., Baek, J., Kim, E.: A probabilistic image-weighting scheme for robust silhouette-based gait recognition. Multimed. Tools Appl. 70(3), 1399–1419 (2014)

    Article  Google Scholar 

  35. Ferrer, M.A., Vargas, J.F., Morales, A., et al.: Robustness of offline signature verification based on gray level features. IEEE Trans. Inf. Forensics Secur. 7(3), 966–977 (2012)

    Article  Google Scholar 

  36. Kaur, R., Choudhary, P.: Offline signature verification in Punjabi based on SURF features and critical point matching using HMM. Int. J. Comput. Appl. 111(16), 4–11 (2015)

    Google Scholar 

  37. Abdoli, S., Hajati, F.: Offline signature verification using geodesic derivative pattern. In: 2014 22nd Iranian Conference on Electrical Engineering (ICEE) IEEE (2014)

    Google Scholar 

  38. Shekar, B.H., Bharathi, R.K.: DCT-SVM-based technique for off-line signature verification. In: Sridhar, V., Sheshadri, H., Padma, M. (eds.) Emerging Research in Electronics, Computer Science and Technology. LNEE, vol. 248, pp. 843–853. Springer, New Delhi (2014). https://doi.org/10.1007/978-81-322-1157-0_85

    Chapter  Google Scholar 

  39. Vargas, J.F., et al.: Off-line signature verification based on grey level information using texture features. Pattern Recognit. 44(2), 375–385 (2011)

    Article  Google Scholar 

  40. Wen, J., Chen, M., Ren, J.: Off-line signature verification based on local structural pattern distribution features. In: Li, S., Liu, C., Wang, Y. (eds.) CCPR 2014. CCIS, vol. 484, pp. 499–507. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45643-9_53

    Chapter  Google Scholar 

  41. Azmi, A.N., Nasien, D.: Freeman chain code (FCC) representation in signature fraud detection based on nearest neighbour and artificial neural network (ANN) classifiers. Int. J. Image Process. (IJIP) 8(6), 434 (2014)

    Google Scholar 

  42. Das, S., Roy, A.: Signature verification using rough set theory based feature selection. In: Behera, H.S., Mohapatra, D.P. (eds.) Computational Intelligence in Data Mining—Volume 2. AISC, vol. 411, pp. 153–161. Springer, New Delhi (2016). https://doi.org/10.1007/978-81-322-2731-1_14

    Chapter  Google Scholar 

  43. Hatkar, P.V., Salokhe, B.T., Malgave, A.A.: Off-line hand written signature verification using neural network. Methodology 2(1), 1–5 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weike Nie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, J., Xu, P., Nie, W., Zhang, Y., Liu, R. (2018). A Review of Recent Advances in Identity Identification Technology Based on Biological Features. In: Xu, Z., Gao, X., Miao, Q., Zhang, Y., Bu, J. (eds) Big Data. Big Data 2018. Communications in Computer and Information Science, vol 945. Springer, Singapore. https://doi.org/10.1007/978-981-13-2922-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2922-7_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2921-0

  • Online ISBN: 978-981-13-2922-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics