Skip to main content

Design of Multifunctional Soft Biomaterials: Based on the Intermediate Water Concept

  • Chapter
  • First Online:
New Polymeric Materials Based on Element-Blocks

Abstract

There are numerous parameters of polymeric biomaterials that can affect the protein adsorption and cell adhesion. The mechanisms responsible for the polymer/protein/cell interactions at the molecular level have not been clearly demonstrated, although many experimental and theoretical efforts have been made to understand these mechanisms. Water interactions have been recognized as fundamental for the protein and cell response to contact with polymers. This chapter focuses on the interfacial water at the polymer/protein/cell interfaces and specific water structure in hydrated biopolymers and bio-inspired water in hydrated synthetic polymers. Additionally, it highlights recent developments in the use of biocompatible polymeric biomaterials for medical devices and provides an overview of the progress made in the design of multifunctional element-block polymers by controlling the bio-inspired water structure through precision polymer synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. a). Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 43:3–13. b). Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2004) Biomaterials science; an introduction to materials in medicine. Academic, London. c) Special Issue of Prof. T. Tsuruta (2010) J Biomater Sci Polym Ed 21:1827–1970

    Google Scholar 

  2. Tanaka M, Mochizuki A, Ishii N, Motomura T, Hatakeyama T (2002) Study on blood compatibility of poly(2-methoxyethylacrylate). Relationship between water structure and platelet compatibility in poly(2-methoxylethylacrylate-co-2-hydroxyethylmethacrylate). Biomacromolecules 3:36–41

    Article  CAS  Google Scholar 

  3. Peppas NA (1987) Hydrogel in medicine and pharmacy, vol 2. CRC Press, Boca Raton

    Google Scholar 

  4. Okano T, Nishiyama S, Shinohara I, Akaike T, Sakurai Y, Kataoka K, Tsuruta T (1981) Effect of hydrophilic and hydrophobic microdomains on mode of interaction between block copolymer and blob platelets. J Biomed Mater Res 15:393–403

    Article  CAS  Google Scholar 

  5. Ishihara K, Nomura H, Mihara T, Kurita K, Iwasaki Y, Nakabayashi N (1998) Why do phospholipid polymers reduce protein adsorption? J Biomed Mater Res 39:323–330

    Article  CAS  Google Scholar 

  6. Holmlin RE, Chen X, Chapman RG, Takayama S, Whitesides GM (2001) Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir 17:2841–2850

    Article  CAS  Google Scholar 

  7. Kitano H, Tada S, Mori T, Takaha K, Gemmei-Ide M, Tanaka M, Fukuda M, Yokoyama Y (2005) Correlation between the structure of water in the vicinity of carboxybetaine polymers and their blood-compatibility. Langmuir 21:11932–11940

    Article  CAS  Google Scholar 

  8. Tanaka M, Motomura T, Kawada M, Anzai T, Kasori Y, Shiroya T, Shimura K, Onishi M, Mochizuki A (2000) Blood compatible aspects of poly(2-methoxyethylacrylate) (PMEA)--relationship between protein adsorption and platelet adhesion on PMEA surface. Biomaterials 21(14):1471–1481

    Article  CAS  Google Scholar 

  9. Tanaka M, Motomura T, Ishii N, Shimura K, Onishi M, Mochizuki A, Hatakeyama T (2000) Cold crystallization of water in hydrated poly(2‐methoxyethyl acrylate) (PMEA). Polym Int 49:1709–1713

    Article  CAS  Google Scholar 

  10. Tanaka M, Mochizuki A (2004) Effect of water structure on blood compatibility: thermal analysis of water in poly(meth)acrylate. J Biomed Mater Res 68A:684–695

    Article  CAS  Google Scholar 

  11. Tanaka M, Mochizuki A, Motomura T, Shimura K, Onishi M, Okahata Y (2001) In situ studies on protein adsorption onto a poly(2-methoxyethyl acrylate) surface by a quartz crystal microbalance. Colloids Surf A Physicochem Eng Asp 193:145–152

    Article  CAS  Google Scholar 

  12. Tanaka M, Mochizuki A, Shiroya T, Motomura T, Shimura K, Onishi M, Okahata Y (2002) Study on kinetics of early stage protein adsorption and desorption on poly(2-methoxyethyl acrylate) (PMEA) surface. Colloids Surf A Physicochem Eng Asp 203:195–204

    Article  CAS  Google Scholar 

  13. Hayashi T, Tanaka Y, Koide Y, Tanaka M, Hara M (2012) Mechanism underlying bioinertness of self-assembled monolayers of Oligo(ethyleneglycol)-terminated alkanethiols on gold: protein adsorption, platelet adhesion, and surface forces. Phys Chem Chem Phys 14:10194–10206

    Article  Google Scholar 

  14. Sekine T, Tanaka Y, Sato C, Tanaka M, Hayashi T (2015) Evaluation of factors to determine platelet compatibility by using self-assembled monolayers with a chemical gradient. Langmuir 31:7100–7105

    Article  CAS  Google Scholar 

  15. Hazlewood CF, Nichols BL, Chamberlain NF (1969) Evidence for the existence of a minimum of two phases of ordered water in skeletal muscle. Nature 222:747

    Article  CAS  Google Scholar 

  16. Kuntz ID Jr, Brassfield TS, Law GD, Purcell GV (1969) Hydration of macromolecules. Science 163(3873):1329–1331

    Article  CAS  Google Scholar 

  17. Uedaira H (1980) In: Pullman B, Yagi K (eds) Water and metal cations in biological systems. Japan Scientific Societies Press, Tokyo, p 47

    Google Scholar 

  18. Pal SK, Peon J, Zewail AH (2002) Biological water at the protein surface: dynamical solvation probed directly with femtosecond resolution. Proc Natl Acad Sci U S A 99:1763

    Article  CAS  Google Scholar 

  19. Morita S, Tanaka M, Ozaki Y (2007) Time-resolved in-situ ATRIR observations of the process of water into a poly(2-methoxyethyl acrylate) (PMEA) film. Langmuir 23:3750–3761

    Article  CAS  Google Scholar 

  20. Morita S, Tanaka M (2014) Effect of sodium chloride on hydration structures of PMEA and P(MPC-r-BMA). Langmuir 30:10698–10703

    Article  CAS  Google Scholar 

  21. Miwa Y, Ishida H, Saitô H, Tanaka M, Mochizuki A (2009) Network structures and dynamics of dry and swollen poly(acrylate)s. Polymer 50:6091–6099

    Article  CAS  Google Scholar 

  22. Hatakayama T, Tanaka M, Hatakayama H (2010) Studies on bound water restrained by poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC): comparison of the polysaccharides-water systems. Acta Biomater 6:2077–2082

    Article  Google Scholar 

  23. Tanaka M, Hayashi T, Morita S (2013) The roles of water molecules at the biointerface of medical polymers. Polym J 45:701–710

    Article  CAS  Google Scholar 

  24. Sato K, Kobayashi S, Kusakari M, Watahiki S, Oikawa M, Hoshiba T, Tanaka M (2015) The relationship between water structure and blood compatibility in poly (2-methoxyethyl Acrylate) (PMEA) analogues. Macromol Biosci 15:1296–1303

    Article  CAS  Google Scholar 

  25. Tanaka M, Sato K, Kitakami E, Kobayashi S, Hoshiba T, Fukushima K (2015) Design of biocompatible and biodegradable polymers based on intermediate water concept. Polym J 47:114–121

    Article  CAS  Google Scholar 

  26. Hoshiba T, Nemoto E, Sato K, Orui T, Otaki T, Yoshihiro A, Tanaka M (2015) Regulation of the contribution of integrin to cell attachment on poly(2-Methoxyethyl Acrylate) (PMEA) analogous polymers for attachment-based cell enrichment. PLoS One 10:e0136066

    Article  Google Scholar 

  27. Kobayashi S, Fukuda K, Kataoka M, Tanaka M (2016) Regioselective ring-opening metathesis polymerization of 3-substituted cyclooctenes with ether side chains. Macromolecules 49:2493–2501

    Article  CAS  Google Scholar 

  28. Osawa K, Kobayashi S, Tanaka M (2016) Synthesis of sequence-specific polymers with amide side chains via regio-/stereoselective ring-opening metathesis polymerization of 3-substitutedcis-cyclooctene. Macromolecules 49:8154–8161

    Article  CAS  Google Scholar 

  29. Sato K, Kobayashi S, Sekishita A, Wakui M, Tanaka M (2017) Synthesis and thrombogenicity evaluation evaluation of poly(3-methoxypropionic acid vinyl ester): a candidate for blood compatible polymer. Biomacromolecules 18:1609–1616

    Article  CAS  Google Scholar 

  30. Hoshiba T, Nikaido M, Tanaka M (2014) Characterization of the attachment mechanisms of tissue-derived cell lines to blood-compatible polymers. Adv Healthc Mater 3:775–784

    Article  CAS  Google Scholar 

  31. Choi H, Tanaka M, Hiragun T, Hide M, Sugimoto K (2014) Non-tumor mast cells cultured in vitro on a honeycomb-like structured film proliferate with multinucleated formation. Nanomedicine 10:313–319

    Article  CAS  Google Scholar 

  32. Hirata T, Matsuno H, Kawaguchi D, Hirai T, Yamada N, Tanaka M, Tanaka K (2015) Effect of local chain dynamics on a bio-inert interface. Langmuir 31:3661–3667

    Article  CAS  Google Scholar 

  33. Hoshiba T, Otaki T, Nemoto E, Maruyama H, Tanaka M (2015) Blood com- patible polymer for hepatocyte culture with high hepatocyte-specific functions toward bioartificial liver development. ACS Appl Mater Interfaces 7:18096–18103

    Article  CAS  Google Scholar 

  34. Khan F, Tanaka M, Ahmad SR, Mater J (2015) Fabrication of polymeric biomaterials: a strategy for tissue engineering and medical devices. Chem B 3:8224–8249

    CAS  Google Scholar 

  35. Sato C, Aoki M, Tanaka M (2016) Blood-compatible poly(2-methoxyethyl acrylate) for the adhesion and proliferation of endothelial and smooth muscle cells. Colloids Surf B: Biointerfaces 145:586–596

    Article  CAS  Google Scholar 

  36. Hoshiba T, Nikaido M, Yagi S, Konno I, Yoshihiro A, Tanaka M, Bioact J (2016) Blood compatible poly(2-methoxyethyl acrylate) (PMEA) for the adhesion and proliferation of lung cancer cells toward the isolation and analysis of circulating tumor cells. Compat Polym 31:361–372

    Google Scholar 

  37. Kono K, Hiruma H, Kobayashi S, Sato Y, Tanaka M, Sawada R, Niimi S (2016) In vitro endothelialization test of biomaterials using immortalized endothelial cells. PLoS One 11:e01582898

    Google Scholar 

  38. Hoshiba T, Orui T, Endo C, Sato K, Yoshihiro A, Minagawa Y, Tanaka M (2016) Adhesion-based simple capture and recovery of circulating tumor cells using a blood-compatible and thermo-responsive polymer-coated substrate. RSC Adv 6:89103–89112

    Article  CAS  Google Scholar 

  39. Murakami D, Kobayashi S, Tanaka M (2016) Interfacial structures and fibrinogen adsorption at blood-compatible polymer/water interfaces. ACS Bimater Sci Eng 2(12):2122–2126

    Article  CAS  Google Scholar 

  40. Hoshiba T, Nemoto E, Sato K, Maruyama H, Endo C, Tanaka M (2016) Promotion of adipogenesis of 3T3-L1 cells on protein adsorption-suppressing poly(2-methoxyethyl acrylate) analogs. Biomacromolecules 17:3808–3815

    Article  CAS  Google Scholar 

  41. Fukushima K, Tsai M, Ota T, Haga Y, Matsuzaki K, Inoue Y, Tanaka M (2015) Evaluation of haemocompatibility of hydrated biodegradable aliphatic carbonyl polymers with a subtle difference in a backbone structure on the basis of intermediate water concept and surface hydration. Polym J 47:469–473

    Article  CAS  Google Scholar 

  42. Basterretxea A, Haga Y, Sanchez-Sanchez A, Isik M, Irusta L, Tanaka M, Fukushima K, Sardon H (2016) Biocompatibility and hemocompatibility evaluation of polyether urethanes synthesized using DBU organocatalyst. Eur Polym J 84:750–758

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Professor Emeritus Teiji Tsuruta (University of Tokyo) for his valuable advice. The author also would like to thank all members of the Tsuruta Forum for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaru Tanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tanaka, M. (2019). Design of Multifunctional Soft Biomaterials: Based on the Intermediate Water Concept. In: Chujo, Y. (eds) New Polymeric Materials Based on Element-Blocks. Springer, Singapore. https://doi.org/10.1007/978-981-13-2889-3_23

Download citation

Publish with us

Policies and ethics