Skip to main content

Just Enough Non-linearity

  • Chapter
  • First Online:
Mathematical Insights into Advanced Computer Graphics Techniques (MEIS 2016, MEIS 2017)

Abstract

Most of the phenomena that are relevant to computer animation are inherently non-linear. These include the equations governing the flow of smoke and water, the dynamics of skin and flesh, and functions that form intricate Julia sets. Which of these non-linearities are visually important, and which just introduce unnecessary trouble? I examine a few case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Braverman M, Yampolsky M (2006) Non-computable Julia sets. J Am Math Soc 19(3):551–578

    Google Scholar 

  2. Bridson R, Houriham J, Nordenstam M (2007) Curl-noise for procedural fluid flow. ACM Trans Graph 26(3)

    Article  Google Scholar 

  3. Douady A, Hubbard JH, Lavaurs P (1984) Etude dynamique des polynômes complexes

    Google Scholar 

  4. Hart JC, Sandin DJ, Kauffman LH (1989) Ray tracing deterministic 3-d fractals. In: ACM SIGGRAPH computer graphics, vol 23. ACM, pp 289–296

    Google Scholar 

  5. Irving G, Teran J, Fedkiw R (2004) Invertible finite elements for robust simulation of large deformation. In: Proceedings of the 2004 ACM SIGGRAPH/eurographics symposium on computer animation, SCA ’04. Eurographics Association, Aire-la-Ville, Switzerland, pp 131–140. https://doi.org/10.1145/1028523.1028541

  6. Kim B, Liu Y, Llamas I, Rossignac J (2005) Flowfixer: using BFECC for fluid simulation. In: Eurographics conference on natural phenomena, pp 51–56

    Google Scholar 

  7. Kim T (2015) Quaternion Julia set shape optimization. Comput Graph Forum 34(5):167–176

    Article  Google Scholar 

  8. Kim T, Tessendorf J, Thürey N (2013) Closest point turbulence for liquid surfaces. ACM Trans Graph 32(2):15:1–15:13

    Article  Google Scholar 

  9. Kim T, Thürey N, James D, Gross M (2008) Wavelet turbulence for fluid simulation. ACM Trans Graph 27(3):50:1–50:6

    Article  Google Scholar 

  10. Lindsey KA, Younsi M (2016) Fekete polynomials and shapes of Julia sets. arXiv:1607.05055

  11. Losasso F, Gibou F, Fedkiw R (2004) Simulating water and smoke with an octree data structure. ACM Trans Graph 23(3):457–462

    Article  Google Scholar 

  12. Mandelbrot BB, Pignoni R (1983) The fractal geometry of nature, vol 173. WH Freeman, New York

    Google Scholar 

  13. Mercier O, Beauchemin C, Thuerey N, Kim T, Nowrouzezahrai D (2015) Surface turbulence for particle-based liquid simulations. ACM Trans Graph 34(6):202:1–202:10

    Article  Google Scholar 

  14. Mullen P, Crane K, Pavlov D, Tong Y, Desbrun M (2009) Energy-preserving integrators for fluid animation. ACM Trans Graph 28(3):38:1–38:8

    Article  Google Scholar 

  15. Müller M, Dorsey J, McMillan L, Jagnow R, Cutler B (2002) Stable real-time deformations. In: Proceedings of the ACM SIGGRAPH/eurographics symposium on computer animation, pp 49–54

    Google Scholar 

  16. Narain R, Sewall J, Carlson M, Lin MC (2008) Fast animation of turbulence using energy transport and procedural synthesis. ACM Trans Graph 27(5):166:1–166:8

    Article  Google Scholar 

  17. Norton A (1982) Generation and display of geometric fractals in 3-d. In: ACM SIGGRAPH computer graphics, vol 16. ACM, pp 61–67

    Google Scholar 

  18. Sanders J, Kandrot E (2010) CUDA by example: an introduction to general-purpose GPU programming, portable documents. Addison-Wesley Professional, Boston

    Google Scholar 

  19. Savelsberg R, van de Water W (2008) Turbulence of a free surface. Phys. Rev. Lett. 100:034,501. https://doi.org/10.1103/PhysRevLett.100.034501

  20. Selle A, Fedkiw R, Kim B, Liu Y, Rossignac J (2008) An unconditionally stable maccormack method. J Sci Comput 35(2):350–371

    Article  MathSciNet  Google Scholar 

  21. Stam J (1999) Stable fluids. In: Proceedings of SIGGRAPH, pp 121–128

    Google Scholar 

  22. Stam J, Fiume E (1993) Turbulent wind fields for gaseous phenomena. In: Proceedings of the 20th annual conference on computer graphics and interactive techniques, pp 369–376

    Google Scholar 

  23. Zhang X, Bridson R, Greif C (2015) Restoring the missing vorticity in advection-projection fluid solvers. ACM Trans Graph 34(4):52:1–52:8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, T. (2019). Just Enough Non-linearity. In: Dobashi, Y., Kaji, S., Iwasaki, K. (eds) Mathematical Insights into Advanced Computer Graphics Techniques. MEIS MEIS 2016 2017. Mathematics for Industry, vol 32. Springer, Singapore. https://doi.org/10.1007/978-981-13-2850-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2850-3_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2849-7

  • Online ISBN: 978-981-13-2850-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics