Skip to main content

Anionic Redox and Stability Mechanism of Li-Rich Layered Oxides

  • Chapter
  • First Online:
Studies on Anionic Redox in Li-Rich Cathode Materials of Li-Ion Batteries

Part of the book series: Springer Theses ((Springer Theses))

  • 812 Accesses

Abstract

Lithium-ion batteries have been increasingly urged with high-energy density and long cycle life to meet the increasing requirements for portable electronics, use of renewable energy, and electric vehicles.

This chapter was adapted from B. Li et al. Advanced Functional Materials 2016, 26 (9), 1330–1337 with permission. Copyright 2016, Wiley-VCH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Padhi AK, Nanjundaswamy KS, Masquelier C, et al. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J Electrochem Soc. 1997;144(5):1609–13.

    Article  Google Scholar 

  2. Ohzuku T, Ueda A, Nagayama M. Electrochemistry and structural chemistry of LiNiO2 (R3̅m) for 4 v secondary lithium cells. J Electrochem Soc. 1993;140(7):1862–70.

    Article  Google Scholar 

  3. Gu M, Belharouak I, Zheng J, et al. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano. 2013;7(1):760–7.

    Article  Google Scholar 

  4. Croy JR, Gallagher KG, Balasubramanian M, et al. Examining hysteresis in composite xLi2MnO3·(1–x)LiMO2 cathode structures. J Phys Chem C. 2013;117(13):6525–36.

    Article  Google Scholar 

  5. Mohanty D, Li J, Abraham DP, et al. Unraveling the voltage-fade mechanism in high-energy-density lithium-ion batteries: origin of the tetrahedral cations for spinel conversion. Chem Mater. 2014;26(21):6272–80.

    Article  Google Scholar 

  6. Lyu Y, Zhao N, Hu E, et al. Probing reversible multielectron transfer and structure evolution of Li1.2Cr0.4Mn0.4O2 cathode material for Li-ion batteries in a voltage range of 1.0–4.8 V. Chem Mater. 2015;27(15):5238–52.

    Article  Google Scholar 

  7. Xu Y, Hu E, Yang F, et al. Structural integrity—searching the key factor to suppress the voltage fade of Li-rich layered cathode materials through 3D X-ray imaging and spectroscopy techniques. Nano Energy. 2016;1(28):164–71.

    Article  Google Scholar 

  8. Zheng J, Gu M, Genc A, et al. Mitigating voltage fade in cathode materials by improving the atomic level uniformity of elemental distribution. Nano Lett. 2014;14(5):2628–35.

    Article  Google Scholar 

  9. Dogan F, Long BR, Croy JR, et al. Re-entrant lithium local environments and defect driven electrochemistry of Li- and Mn-rich Li-ion battery cathodes. J Am Chem Soc. 2015;137(6):2328–35.

    Article  Google Scholar 

  10. Koga H, Croguennec L, Ménétrier M, et al. Operando X-ray absorption study of the redox processes involved upon cycling of the Li-rich layered oxide Li1.20Mn0.54Co0.13Ni0.13O2 in Li ion batteries. J Phys Chem C. 2014;118(11):5700–9.

    Article  Google Scholar 

  11. Koga H, Croguennec L, Ménétrier M, et al. Different oxygen redox participation for bulk and surface: A possible global explanation for the cycling mechanism of Li1.20Mn0.54Co0.13Ni0.13O2. J Power Sources. 2013;236:250–8.

    Article  Google Scholar 

  12. Luo K, Roberts MR, Hao R, et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat Chem. 2016;8(7):684–91.

    Article  Google Scholar 

  13. Muhammad S, Kim H, Kim Y, et al. Evidence of reversible oxygen participation in anomalously high capacity Li- and Mn-rich cathodes for Li-ion batteries. Nano Energy. 2016;21:172–84.

    Article  Google Scholar 

  14. Sun YK, Lee MJ, Yoon CS, et al. The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries. Adv Mater. 2012;24(9):1192–6.

    Article  Google Scholar 

  15. Wu F, Li N, Su Y, et al. Spinel/layered heterostructured cathode material for high-capacity and high-rate Li-ion batteries. Adv Mater. 2013;25(27):3722–6.

    Article  Google Scholar 

  16. Qiao Q Q, Zhang H Z, Li G R, et al. Surface modification of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide with LiMnPO4 as the cathode for lithium-ion batteries. J Mate Chem A. 2013;1(17):5262.

    Google Scholar 

  17. Liu W, Oh P, Liu X, et al. Countering voltage decay and capacity fading of lithium-rich cathode material at 60 & #xB0;C by hybrid surface protection layers. Adv Energy Mater. 2015;5(13):1500274.

    Article  Google Scholar 

  18. Zhang X, Belharouak I, Li L, et al. Structural and electrochemical study of Al2O3 and TiO2 coated Li1.2Ni0.13Mn0.54Co0.13O2 cathode material using ALD. Adv Energy Mater. 2013;3(10):1299–1307.

    Google Scholar 

  19. Pei Y, Xu C-Y, Xiao Y-C, et al. Phase transition induced synthesis of layered/spinel heterostructure with enhanced electrochemical properties. Adv Functional Mater. 2017;1604349.

    Google Scholar 

  20. Zhao Y, Liu J, Wang S, et al. Surface structural transition induced by gradient polyanion-doping in Li-rich layered oxides: Implications for enhanced electrochemical performance. Adv Functional Mate. 2016;26(26):4760–7.

    Article  Google Scholar 

  21. Zheng F, Yang C, Xiong X, et al. Nanoscale surface modification of lithium-rich layered-oxide composite cathodes for suppressing voltage fade. Angew Chem Int Ed. 2015;127(44):1–6.

    Google Scholar 

  22. Bian X, Fu Q, Qiu H, et al. High-performance Li(Li0.18Ni0.15Co0.15Mn0.52)O2@Li4Mn5O12 heterostructured cathode material coated with a lithium borate oxide glass layer. Chem Mater. 2015;27(16):5745–54.

    Article  Google Scholar 

  23. He W, Yuan D, Qian J, et al. Enhanced high-rate capability and cycling stability of Na-stabilized layered Li1.2[Co0.13Ni0.13Mn0.54]O2 cathode material. J Mater Chem A. 2013;1(37):11397.

    Google Scholar 

  24. Zhang HZ, Qiao QQ, Li GR, et al. PO43− polyanion-doping for stabilizing Li-rich layered oxides as cathode materials for advanced lithium-ion batteries. J Mater Chem A. 2014;2(20):7454.

    Article  Google Scholar 

  25. Sathiya M, Rousse G, Ramesha K, et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat Mater. 2013;12(9):827–35.

    Article  Google Scholar 

  26. Sathiya M, Abakumov AM, Foix D, et al. Origin of voltage decay in high-capacity layered oxide electrodes. Nat Mater. 2015;14(2):230–8.

    Article  Google Scholar 

  27. Jung S-K, Gwon H, Hong J, et al. Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries. Adv Energy Mater. 2014;4(1):1300787.

    Google Scholar 

  28. Graetz J, Hightower A, Ahn CC, et al. Electronic structure of chemically-delithiated LiCoO2 studied by electron energy-loss spectrometry. Journal Phys Chem B. 2002;106(6):1286–9.

    Article  Google Scholar 

  29. Wolverton C, Zunger A. First-principles prediction of vacancy order-disorder and intercalation battery voltages in LixCoO2. Phys Rev Lett. 1998;81(3):606–9.

    Article  Google Scholar 

  30. Aydinol MK, Kohan AF, Ceder G, et al. Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys Rev B. 1997;56(3):1354–65.

    Article  Google Scholar 

  31. Yoon WS, Kim KB, Kim MG, et al. Oxygen contribution on Li-ion intercalation−deintercalation in LiCoO2 investigated by O K-edge and Co L-edge X-ray absorption spectroscopy. J Phys Chem B. 2002;106(10):2526–32.

    Article  Google Scholar 

  32. Uchimoto Y, Sawada H, Yao T. Changes in electronic structure by Li ion deintercalation in LiNiO2 from nickel L-edge and O K-edge XANES. J Power Sources. 2001;97–98:326–7.

    Article  Google Scholar 

  33. Yoon W-S, Balasubramanian M, Chung KY, et al. Investigation of the charge compensation mechanism on the electrochemically Li-ion deintercalated Li1-xNi1/3Mn1/3Co1/3O2 electrode system by combination of soft and hard X-ray absorption spectroscopy. J Am Chem Soc. 2005;127(49):17479–87.

    Article  Google Scholar 

  34. Oishi M, Fujimoto T, Takanashi Y, et al. Charge compensation mechanisms in Li1.16Ni0.15Co0.19Mn0.50O2 positive electrode material for Li-ion batteries analyzed by a combination of hard and soft X-ray absorption near edge structure. J Power Sources. 2013;222:45–51.

    Article  Google Scholar 

  35. Van der Ven A, Aydinol MK, Ceder G, et al. First-principles investigation of phase stability in LixCoO2. Phys Rev B. 1998;58(6):2975–87.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingguo Xia .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, B. et al. (2019). Anionic Redox and Stability Mechanism of Li-Rich Layered Oxides. In: Studies on Anionic Redox in Li-Rich Cathode Materials of Li-Ion Batteries. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-2847-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2847-3_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2846-6

  • Online ISBN: 978-981-13-2847-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics