Advertisement

Extracellular Matrix and Ageing

  • Helen L. BirchEmail author
Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 90)

Abstract

The extracellular matrix (ECM) provides the environment for many cells types within the body and, in addition to the well recognised role as a structural support, influences many important cell process within the body. As a result, age-related changes to the proteins of the ECM have far reaching consequences with the potential to disrupt many different aspects of homeostasis and healthy function. The proteins collagen and elastin are the most abundant in the ECM and their ability to function as a structural support and provide mechanical stability results from the formation of supra-molecular structures. Collagen and elastin have a long half-life, as required by their structural role, which leaves them vulnerable to a range of post-translational modifications. In this chapter the role of the ECM is discussed and the component proteins introduced. Major age-related modifications including glycation, carbamylation and fragmentation and the impact these have on ECM function are reviewed.

Keywords

Collagen Elastin Ageing Advanced glycation end-products Fragmentation 

References

  1. Bailey AJ, Paul RG, Knott L (1998) Mechanisms of maturation and ageing of collagen. Mech Ageing Dev 106(1–2):1–56CrossRefGoogle Scholar
  2. Baldock C, Oberhauser AF, Ma L, Lammie D, Siegler V, Mithieux SM, Tu Y, Chow JY, Suleman F, Malfois M, Rogers S, Guo L, Irving TC, Wess TJ, Weiss AS (2011) Shape of tropoelastin, the highly extensible protein that controls human tissue elasticity. Proc Natl Acad Sci U S A 108(11):4322–4327.  https://doi.org/10.1073/pnas.1014280108 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bella J (2016) Collagen structure: new tricks from a very old dog. Biochem J 473(8):1001–1025.  https://doi.org/10.1042/bj20151169 CrossRefPubMedGoogle Scholar
  4. Biemel KM, Reihl O, Conrad J, Lederer MO (2001) Formation pathways for lysine-arginine cross-links derived from hexoses and pentoses by Maillard processes: unraveling the structure of a pentosidine precursor. J Biol Chem 276(26):23405–23412.  https://doi.org/10.1074/jbc.M102035200 CrossRefPubMedGoogle Scholar
  5. Blevins FT, Hecker AT, Bigler GT, Boland AL, Hayes WC (1994) The effects of donor age and strain rate on the biomechanical properties of bone-patellar tendon-bone allografts. Am J Sports Med 22(3):328–333CrossRefGoogle Scholar
  6. Bonta M, Daina L, Mutiu G (2013) The process of ageing reflected by histological changes in the skin. Romanian J Morphol Embryol 54(3 Suppl):797–804Google Scholar
  7. Bourne JW, Lippell JM, Torzilli PA (2014) Glycation cross-linking induced mechanical-enzymatic cleavage of microscale tendon fibers. Matrix Biol 34:179–184.  https://doi.org/10.1016/j.matbio.2013.11.005 CrossRefPubMedGoogle Scholar
  8. Campbell E, Pierce J, Endicott S, Shapiro S (1991) Evaluation of extracellular matrix turnover. Methods and results for normal human lung parenchymal elastin. Chest 99(3 Suppl):49sCrossRefGoogle Scholar
  9. Collier TA, Nash A, Birch HL, de Leeuw NH (2015) Preferential sites for intramolecular glucosepane cross-link formation in type I collagen: a thermodynamic study. Matrix Biol 48:78–88.  https://doi.org/10.1016/j.matbio.2015.06.001 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Collier TA, Nash A, Birch HL, de Leeuw NH (2016) Intra-molecular lysine-arginine derived advanced glycation end-product crosslinking in type I collagen: a molecular dynamics simulation study. Biophys Chem 218:42–46CrossRefGoogle Scholar
  11. Collier TA, Nash A, Birch HL, de Leeuw NH (2018) Effect on the mechanical properties of type I collagen of intra-molecular lysine-arginine derived advanced glycation end-product cross-linking. J Biomech 67:55–61.  https://doi.org/10.1016/j.jbiomech.2017.11.021 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Corps AN, Robinson AH, Harrall RL, Avery NC, Curry VA, Hazleman BL, Riley GP (2012) Changes in matrix protein biochemistry and the expression of mRNA encoding matrix proteins and metalloproteinases in posterior tibialis tendinopathy. Ann Rheum Dis 71(5):746–752.  https://doi.org/10.1136/annrheumdis-2011-200391 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Couppe C, Hansen P, Kongsgaard M, Kovanen V, Suetta C, Aagaard P, Kjaer M, Magnusson SP (2009) Mechanical properties and collagen cross-linking of the patellar tendon in old and young men. J Appl Physiol (Bethesda, Md: 1985) 107(3):880–886.  https://doi.org/10.1152/japplphysiol.00291.2009 CrossRefGoogle Scholar
  14. Couppe C, Svensson RB, Kongsgaard M, Kovanen V, Grosset JF, Snorgaard O, Bencke J, Larsen JO, Bandholm T, Christensen TM, Boesen A, Helmark IC, Aagaard P, Kjaer M, Magnusson SP (2016) Human Achilles tendon glycation and function in diabetes. J Appl Physiol (Bethesda, Md: 1985) 120(2):130–137.  https://doi.org/10.1152/japplphysiol.00547.2015 CrossRefGoogle Scholar
  15. Csapo R, Malis V, Hodgson J, Sinha S (2014) Age-related greater Achilles tendon compliance is not associated with larger plantar flexor muscle fascicle strains in senior women. J Appl Physiol (Bethesda, Md: 1985) 116(8):961–969.  https://doi.org/10.1152/japplphysiol.01337.2013 CrossRefGoogle Scholar
  16. Diridollou S, Vabre V, Berson M, Vaillant L, Black D, Lagarde JM, Gregoire JM, Gall Y, Patat F (2001) Skin ageing: changes of physical properties of human skin in vivo. Int J Cosmet Sci 23(6):353–362.  https://doi.org/10.1046/j.0412-5463.2001.00105.x CrossRefPubMedGoogle Scholar
  17. Dudhia J, Davidson CM, Wells TM, Vynios DH, Hardingham TE, Bayliss MT (1996) Age-related changes in the content of the C-terminal region of aggrecan in human articular cartilage. Biochem J 313(Pt 3):933–940CrossRefGoogle Scholar
  18. Fessel G, Li Y, Diederich V, Guizar-Sicairos M, Schneider P, Sell DR, Monnier VM, Snedeker JG (2014) Advanced glycation end-products reduce collagen molecular sliding to affect collagen fibril damage mechanisms but not stiffness. PLoS One 9(11):e110948.  https://doi.org/10.1371/journal.pone.0110948 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Flahiff CM, Brooks AT, Hollis JM, Vander Schilden JL, Nicholas RW (1995) Biomechanical analysis of patellar tendon allografts as a function of donor age. Am J Sports Med 23(3):354–358CrossRefGoogle Scholar
  20. Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254CrossRefGoogle Scholar
  21. Fullerton GD, Amurao MR (2006) Evidence that collagen and tendon have monolayer water coverage in the native state. Cell Biol Int 30(1):56–65.  https://doi.org/10.1016/j.cellbi.2005.09.008 CrossRefPubMedGoogle Scholar
  22. Gao X, Zhang H, Schmidt AM, Zhang C (2008) AGE/RAGE produces endothelial dysfunction in coronary arterioles in type 2 diabetic mice. Am J Physiol Heart Circ Physiol 295(2):H491–H498.  https://doi.org/10.1152/ajpheart.00464.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gautieri A, Passini FS, Silvan U, Guizar-Sicairos M, Carimati G, Volpi P, Moretti M, Schoenhuber H, Redaelli A, Berli M, Snedeker JG (2017) Advanced glycation end-products: mechanics of aged collagen from molecule to tissue. Matrix Biol 59:95–108.  https://doi.org/10.1016/j.matbio.2016.09.001 CrossRefPubMedGoogle Scholar
  24. Godinho MSC, Thorpe CT, Greenwald SE, Screen HRC (2017) Elastin is localised to the interfascicular matrix of energy storing tendons and becomes increasingly disorganised with ageing. Sci Rep 7(1):9713.  https://doi.org/10.1038/s41598-017-09995-4 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gorisse L, Pietrement C, Vuiblet V, Schmelzer CE, Kohler M, Duca L, Debelle L, Fornes P, Jaisson S, Gillery P (2016) Protein carbamylation is a hallmark of aging. Proc Natl Acad Sci U S A 113(5):1191–1196.  https://doi.org/10.1073/pnas.1517096113 CrossRefPubMedGoogle Scholar
  26. Greenwald SE (2007) Ageing of the conduit arteries. J Pathol 211(2):157–172CrossRefGoogle Scholar
  27. Harmel R, Fiedler D (2018) Features and regulation of non-enzymatic post-translational modifications. Nat Chem Biol 14(3):244–252.  https://doi.org/10.1038/nchembio.2575 CrossRefPubMedGoogle Scholar
  28. Heinemeier KM, Schjerling P, Heinemeier J, Magnusson SP, Kjaer M (2013) Lack of tissue renewal in human adult Achilles tendon is revealed by nuclear bomb (14)C. FASEB J 27(5):2074–2079.  https://doi.org/10.1096/fj.12-225599 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hosoda Y, Kawano K, Yamasawa F, Ishii T, Shibata T, Inayama S (1984) Age-dependent changes of collagen and elastin content in human aorta and pulmonary artery. Angiology 35(10):615–621.  https://doi.org/10.1177/000331978403501001 CrossRefPubMedGoogle Scholar
  30. Hubbard RP, Soutas-Little RW (1984) Mechanical properties of human tendon and their age dependence. J Biomech Eng 106(2):144–150CrossRefGoogle Scholar
  31. Iozzo RV, Schaefer L (2015) Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol 42:11–55.  https://doi.org/10.1016/j.matbio.2015.02.003 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jiang X, Wang X, Tuo M, Ma J, Xie A (2018) RAGE and its emerging role in the pathogenesis of Parkinson’s disease. Neurosci Lett 672:65–69.  https://doi.org/10.1016/j.neulet.2018.02.049 CrossRefPubMedGoogle Scholar
  33. Johnson GA, Tramaglini DM, Levine RE, Ohno K, Choi NY, Woo SL (1994) Tensile and viscoelastic properties of human patellar tendon. J Orthop Res 12(6):796–803.  https://doi.org/10.1002/jor.1100120607 CrossRefPubMedGoogle Scholar
  34. Kadler KE, Baldock C, Bella J, Boot-Handford RP (2007) Collagens at a glance. J Cell Sci 120(Pt 12):1955–1958.  https://doi.org/10.1242/jcs.03453 CrossRefPubMedGoogle Scholar
  35. Kalra A, Lowe A, Al-Jumaily AM (2016) Mechanical behaviour of skin: a review. J Mater Sci Eng 5:254Google Scholar
  36. Karamanidis K, Arampatzis A (2006) Mechanical and morphological properties of human quadriceps femoris and triceps surae muscle-tendon unit in relation to aging and running. J Biomech 39(3):406–417.  https://doi.org/10.1016/j.jbiomech.2004.12.017 CrossRefPubMedGoogle Scholar
  37. Kay AM, Simpson CL, Stewart JA Jr (2016) The role of AGE/RAGE signaling in diabetes-mediated vascular calcification. J Diabete Res 2016:6809703.  https://doi.org/10.1155/2016/6809703 CrossRefGoogle Scholar
  38. Lark MW, Bayne EK, Flanagan J, Harper CF, Hoerrner LA, Hutchinson NI, Singer II, Donatelli SA, Weidner JR, Williams HR, Mumford RA, Lohmander LS (1997) Aggrecan degradation in human cartilage. Evidence for both matrix metalloproteinase and aggrecanase activity in normal, osteoarthritic, and rheumatoid joints. J Clin Invest 100(1):93–106.  https://doi.org/10.1172/jci119526 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Li Y, Fessel G, Georgiadis M, Snedeker JG (2013) Advanced glycation end-products diminish tendon collagen fiber sliding. Matrix Biol 32(3–4):169–177.  https://doi.org/10.1016/j.matbio.2013.01.003 CrossRefPubMedGoogle Scholar
  40. Maroudas A, Palla G, Gilav E (1992) Racemization of aspartic acid in human articular cartilage. Connect Tissue Res 28(3):161–169CrossRefGoogle Scholar
  41. Miles CA, Ghelashvili M (1999) Polymer-in-a-box mechanism for the thermal stabilization of collagen molecules in fibers. Biophys J 76(6):3243–3252.  https://doi.org/10.1016/s0006-3495(99)77476-x CrossRefPubMedPubMedCentralGoogle Scholar
  42. Miles CA, Avery NC, Rodin VV, Bailey AJ (2005) The increase in denaturation temperature following cross-linking of collagen is caused by dehydration of the fibres. J Mol Biol 346(2):551–556.  https://doi.org/10.1016/j.jmb.2004.12.001 CrossRefPubMedGoogle Scholar
  43. Monnier VM, Bautista O, Kenny D, Sell DR, Fogarty J, Dahms W, Cleary PA, Lachin J, Genuth S (1999) Skin collagen glycation, glycoxidation, and crosslinking are lower in subjects with long-term intensive versus conventional therapy of type 1 diabetes: relevance of glycated collagen products versus HbA1c as markers of diabetic complications. DCCT skin collagen ancillary study group. Diabetes control and complications trial. Diabetes 48(4):870–880CrossRefGoogle Scholar
  44. Monnier VM, Mustata GT, Biemel KL, Reihl O, Lederer MO, Zhenyu D, Sell DR (2005) Cross-linking of the extracellular matrix by the maillard reaction in aging and diabetes: an update on “a puzzle nearing resolution”. Ann N Y Acad Sci 1043:533–544.  https://doi.org/10.1196/annals.1333.061 CrossRefPubMedGoogle Scholar
  45. Monnier VM, Sell DR, Strauch C, Sun W, Lachin JM, Cleary PA, Genuth S (2013) The association between skin collagen glucosepane and past progression of microvascular and neuropathic complications in type 1 diabetes. J Diabetes Complicat 27(2):141–149.  https://doi.org/10.1016/j.jdiacomp.2012.10.004 CrossRefPubMedGoogle Scholar
  46. Monnier VM, Genuth S, Sell DR (2016) The pecking order of skin Advanced Glycation Endproducts (AGEs) as long-term markers of glycemic damage and risk factors for micro- and subclinical macrovascular disease progression in Type 1 diabetes. Glycoconj J 33(4):569–579.  https://doi.org/10.1007/s10719-016-9702-2 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA, Hynes RO (2016) The extracellular matrix: tools and insights for the “omics” era. Matrix Biol 49:10–24.  https://doi.org/10.1016/j.matbio.2015.06.003 CrossRefPubMedGoogle Scholar
  48. Naba A, Pearce OMT, Del Rosario A, Ma D, Ding H, Rajeeve V, Cutillas PR, Balkwill FR, Hynes RO (2017) Characterization of the extracellular matrix of normal and diseased tissues using proteomics. J Proteome Res 16(8):3083–3091.  https://doi.org/10.1021/acs.jproteome.7b00191 CrossRefPubMedGoogle Scholar
  49. Nash A, Sassmannshausen J, Bozec L, Birch HL, de Leeuw NH (2016) Computational study of glucosepane-water and hydrogen bond formation: an electron topology and orbital analysis. J Biomol Struct Dyn 35:1–11.  https://doi.org/10.1080/07391102.2016.1172026 CrossRefGoogle Scholar
  50. Neeper M, Schmidt AM, Brett J, Yan SD, Wang F, Pan YC, Elliston K, Stern D, Shaw A (1992) Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem 267(21):14998–15004PubMedGoogle Scholar
  51. O’Rourke MF (1976) Pulsatile arterial haemodynamics in hypertension. Aust NZ J Med 6(suppl 2):40–48CrossRefGoogle Scholar
  52. Peffers MJ, Thorpe CT, Collins JA, Eong R, Wei TK, Screen HR, Clegg PD (2014) Proteomic analysis reveals age-related changes in tendon matrix composition, with age- and injury-specific matrix fragmentation. J Biol Chem 289(37):25867–25878.  https://doi.org/10.1074/jbc.M114.566554 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Perrone L, Sbai O, Nawroth PP, Bierhaus A (2012) The complexity of sporadic Alzheimer’s disease pathogenesis: the role of RAGE as therapeutic target to promote neuroprotection by inhibiting neurovascular dysfunction. Int J Alzheimers Dis 2012:734956.  https://doi.org/10.1155/2012/734956 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Petruska JA, Hodge AJ (1964) A subunit model for the tropocollagen macromolecule. Proc Natl Acad Sci 51:871–876CrossRefGoogle Scholar
  55. Phillips SA, Thornalley PJ (1993) The formation of methylglyoxal from triose phosphates. Investigation using a specific assay for methylglyoxal. Eur J Biochem 212(1):101–105CrossRefGoogle Scholar
  56. Price JC, Guan S, Burlingame A, Prusiner SB, Ghaemmaghami S (2010) Analysis of proteome dynamics in the mouse brain. Proc Natl Acad Sci U S A 107(32):14508–14513.  https://doi.org/10.1073/pnas.1006551107 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Queisser MA, Kouri FM, Konigshoff M, Wygrecka M, Schubert U, Eickelberg O, Preissner KT (2008) Loss of RAGE in pulmonary fibrosis: molecular relations to functional changes in pulmonary cell types. Am J Respir Cell Mol Biol 39(3):337–345.  https://doi.org/10.1165/rcmb.2007-0244OC CrossRefPubMedGoogle Scholar
  58. Ramachandran GN, Chandrasekharan R (1968) Interchain hydrogen bonds via bound water molecules in the collagen triple helix. Biopolymers 6(11):1649–1658.  https://doi.org/10.1002/bip.1968.360061109 CrossRefPubMedGoogle Scholar
  59. Ranger TA, Wong AM, Cook JL, Gaida JE (2015) Is there an association between tendinopathy and diabetes mellitus? A systematic review with meta-analysis. Br J Sports Med 50(16):982–989.  https://doi.org/10.1136/bjsports-2015-094735 CrossRefPubMedGoogle Scholar
  60. Reddy GK (2003) Glucose-mediated in vitro glycation modulates biomechanical integrity of the soft tissues but not hard tissues. J Orthop Res 21(4):738–743.  https://doi.org/10.1016/s0736-0266(03)00006-8 CrossRefPubMedGoogle Scholar
  61. Reddy GK, Stehno-Bittel L, Enwemeka CS (2002) Glycation-induced matrix stability in the rabbit achilles tendon. Arch Biochem Biophys 399(2):174–180.  https://doi.org/10.1006/abbi.2001.2747 CrossRefPubMedGoogle Scholar
  62. Ritz-Timme S, Collins MJ (2002) Racemization of aspartic acid in human proteins. Ageing Res Rev 1(1):43–59CrossRefGoogle Scholar
  63. Schalkwijk CG, Stehouwer CD, van Hinsbergh VW (2004) Fructose-mediated non-enzymatic glycation: sweet coupling or bad modification. Diabetes Metab Res Rev 20(5):369–382.  https://doi.org/10.1002/dmrr.488 CrossRefPubMedGoogle Scholar
  64. Schmidt AM, Hori O, Brett J, Yan SD, Wautier JL, Stern D (1994) Cellular receptors for advanced glycation end products. Implications for induction of oxidant stress and cellular dysfunction in the pathogenesis of vascular lesions. Arterioscler Thromb 14(10):1521–1528CrossRefGoogle Scholar
  65. Sell DR, Biemel KM, Reihl O, Lederer MO, Strauch CM, Monnier VM (2005) Glucosepane is a major protein cross-link of the senescent human extracellular matrix. Relationship with diabetes. J Biol Chem 280(13):12310–12315.  https://doi.org/10.1074/jbc.M500733200 CrossRefPubMedGoogle Scholar
  66. Sivan SS, Tsitron E, Wachtel E, Roughley PJ, Sakkee N, van der Ham F, DeGroot J, Roberts S, Maroudas A (2006) Aggrecan turnover in human intervertebral disc as determined by the racemization of aspartic acid. J Biol Chem 281(19):13009–13014.  https://doi.org/10.1074/jbc.M600296200 CrossRefPubMedGoogle Scholar
  67. Sivan SS, Wachtel E, Tsitron E, Sakkee N, van der Ham F, Degroot J, Roberts S, Maroudas A (2008) Collagen turnover in normal and degenerate human intervertebral discs as determined by the racemization of aspartic acid. J Biol Chem 283(14):8796–8801.  https://doi.org/10.1074/jbc.M709885200 CrossRefPubMedGoogle Scholar
  68. Sivan SS, Van El B, Merkher Y, Schmelzer CE, Zuurmond AM, Heinz A, Wachtel E, Varga PP, Lazary A, Brayda-Bruno M, Maroudas A (2012) Longevity of elastin in human intervertebral disc as probed by the racemization of aspartic acid. Biochim Biophys Acta 1820(10):1671–1677.  https://doi.org/10.1016/j.bbagen.2012.06.010 CrossRefPubMedGoogle Scholar
  69. Stenroth L, Peltonen J, Cronin NJ, Sipila S, Finni T (2012) Age-related differences in Achilles tendon properties and triceps surae muscle architecture in vivo. J Appl Physiol (Bethesda, Md: 1985) 113(10):1537–1544.  https://doi.org/10.1152/japplphysiol.00782.2012 CrossRefGoogle Scholar
  70. Svensson RB, Smith ST, Moyer PJ, Magnusson SP (2018) Effects of maturation and advanced glycation on tensile mechanics of collagen fibrils from rat tail and Achilles tendons. Acta Biomater 70:270–280.  https://doi.org/10.1016/j.actbio.2018.02.005 CrossRefPubMedGoogle Scholar
  71. Sweeney SM, Orgel JP, Fertala A, McAuliffe JD, Turner KR, Di Lullo GA, Chen S, Antipova O, Perumal S, Ala-Kokko L, Forlino A, Cabral WA, Barnes AM, Marini JC, San Antonio JD (2008) Candidate cell and matrix interaction domains on the collagen fibril, the predominant protein of vertebrates. J Biol Chem 283(30):21187–21197.  https://doi.org/10.1074/jbc.M709319200 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Taga Y, Tanaka K, Hamada C, Kusubata M, Ogawa-Goto K, Hattori S (2017) Hydroxyhomocitrulline is a collagen-specific carbamylation mark that affects cross-link formation. Cell Chem Biol 24(10):1276–1284.e1273.  https://doi.org/10.1016/j.chembiol.2017.08.010 CrossRefPubMedGoogle Scholar
  73. Tan AL, Forbes JM, Cooper ME (2007) AGE, RAGE, and ROS in diabetic nephropathy. Semin Nephrol 27(2):130–143.  https://doi.org/10.1016/j.semnephrol.2007.01.006 CrossRefPubMedGoogle Scholar
  74. Thermann H, Frerichs O, Biewener A, Krettek C, Schandelmaier P (1995) Biomechanical studies of human Achilles tendon rupture. Unfallchirurg 98(11):570–575PubMedGoogle Scholar
  75. Thorpe CT, Streeter I, Pinchbeck GL, Goodship AE, Clegg PD, Birch HL (2010) Aspartic acid racemization and collagen degradation markers reveal an accumulation of damage in tendon collagen that is enhanced with aging. J Biol Chem 285(21):15674–15681.  https://doi.org/10.1074/jbc.M109.077503 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Thorpe CT, Udeze CP, Birch HL, Clegg PD, Screen HR (2012) Specialization of tendon mechanical properties results from interfascicular differences. J R Soc Interface 9(76):3108–3117.  https://doi.org/10.1098/rsif.2012.0362 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Thorpe CT, Klemt C, Riley GP, Birch HL, Clegg PD, Screen HR (2013a) Helical sub-structures in energy-storing tendons provide a possible mechanism for efficient energy storage and return. Acta Biomater 9(8):7948–7956.  https://doi.org/10.1016/j.actbio.2013.05.004 CrossRefPubMedGoogle Scholar
  78. Thorpe CT, Udeze CP, Birch HL, Clegg PD, Screen HR (2013b) Capacity for sliding between tendon fascicles decreases with ageing in injury prone equine tendons: a possible mechanism for age-related tendinopathy? Eur Cell Mater 25:48–60CrossRefGoogle Scholar
  79. Thorpe CT, Riley GP, Birch HL, Clegg PD, Screen HR (2014) Effect of fatigue loading on structure and functional behaviour of fascicles from energy-storing tendons. Acta Biomater 10(7):3217–3224.  https://doi.org/10.1016/j.actbio.2014.04.008 CrossRefPubMedGoogle Scholar
  80. Thorpe CT, McDermott BT, Goodship AE, Clegg PD, Birch HL (2016) Ageing does not result in a decline in cell synthetic activity in an injury prone tendon. Scand J Med Sci Sports 26:684–693.  https://doi.org/10.1111/sms.12500 CrossRefPubMedGoogle Scholar
  81. Thorpe CT, Riley GP, Birch HL, Clegg PD, Screen HR (2017) Fascicles and the interfascicular matrix show decreased fatigue life with ageing in energy storing tendons. Acta Biomater 56:58–64.  https://doi.org/10.1016/j.actbio.2017.03.024 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Verzijl N, DeGroot J, Thorpe SR, Bank RA, Shaw JN, Lyons TJ, Bijlsma JW, Lafeber FP, Baynes JW, TeKoppele JM (2000) Effect of collagen turnover on the accumulation of advanced glycation end products. J Biol Chem 275(50):39027–39031.  https://doi.org/10.1074/jbc.M006700200 CrossRefPubMedGoogle Scholar
  83. Wang M, Kim SH, Monticone RE, Lakatta EG (2015) Matrix metalloproteinases promote arterial remodeling in aging, hypertension, and atherosclerosis. Hypertension 65(4):698–703.  https://doi.org/10.1161/hypertensionaha.114.03618 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Wautier MP, Chappey O, Corda S, Stern DM, Schmidt AM, Wautier JL (2001) Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am J Physiol Endocrinol Metab 280(5):E685–E694.  https://doi.org/10.1152/ajpendo.2001.280.5.E685 CrossRefPubMedGoogle Scholar
  85. Wu W, Billinghurst RC, Pidoux I, Antoniou J, Zukor D, Tanzer M, Poole AR (2002) Sites of collagenase cleavage and denaturation of type II collagen in aging and osteoarthritic articular cartilage and their relationship to the distribution of matrix metalloproteinase 1 and matrix metalloproteinase 13. Arthritis Rheum 46(8):2087–2094.  https://doi.org/10.1002/art.10428 CrossRefPubMedGoogle Scholar
  86. Zarkovic K, Larroque-Cardoso P, Pucelle M, Salvayre R, Waeg G, Negre-Salvayre A, Zarkovic N (2015) Elastin aging and lipid oxidation products in human aorta. Redox Biol 4:109–117.  https://doi.org/10.1016/j.redox.2014.12.008 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.UCLLondonUK

Personalised recommendations