Advertisement

Creatine, Creatine Kinase, and Aging

  • Nathalie Sumien
  • Ritu A. Shetty
  • Eric B. GonzalesEmail author
Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 90)

Abstract

With an ever aging population, identifying interventions that can alleviate age-related functional declines has become increasingly important. Dietary supplements have taken center stage based on various health claims and have become a multi-million dollar business. One such supplement is creatine, a major contributor to normal cellular physiology. Creatine, an energy source that can be endogenously synthesized or obtained through diet and supplement, is involved primarily in cellular metabolism via ATP replenishment. The goal of this chapter is to summarize how creatine and its associated enzyme, creatine kinase, act under normal physiological conditions, and how altered levels of either may lead to detrimental functional outcomes. Furthermore, we will focus on the effect of aging on the creatine system and how supplementation may affect the aging process and perhaps reverse it.

Keywords

Creatine Creatine kinase Aging Supplementation Muscle function Motor and cognitive function Anti-aging intervention 

References

  1. Aksenova MV, Aksenov MY, Markesbery WR, Butterfield DA (1999) Aging in a dish: age-dependent changes of neuronal survival, protein oxidation, and creatine kinase BB expression in long-term hippocampal cell culture. J Neurosci Res 58(2):308–317PubMedGoogle Scholar
  2. Alves CR, Santiago BM, Lima FR, Otaduy MC, Calich AL, Tritto AC, de Sa Pinto AL, Roschel H, Leite CC, Benatti FB, Bonfa E, Gualano B (2013) Creatine supplementation in fibromyalgia: a randomized, double-blind, placebo-controlled trial. Arthritis Care Res 65(9):1449–1459.  https://doi.org/10.1002/acr.22020 Google Scholar
  3. Askonas BA (1951) Effect of thyroxine on creatinephosphokinase activity. Nature 167(4258):933–934PubMedGoogle Scholar
  4. Bailey RL, Gahche JJ, Miller PE, Thomas PR, Dwyer JT (2013) Why US adults use dietary supplements. JAMA Intern Med 173(5):355–361.  https://doi.org/10.1001/jamainternmed.2013.2299 PubMedGoogle Scholar
  5. Banga I, Ochoa S, Peters RA (1939) Pyruvate oxidation in brain: some dialysable components of the pyruvate oxidation system. Biochem J 33(12):1980–1996PubMedPubMedCentralGoogle Scholar
  6. Baroncelli L, Molinaro A, Cacciante F, Alessandri MG, Napoli D, Putignano E, Tola J, Leuzzi V, Cioni G, Pizzorusso T (2016) A mouse model for creatine transporter deficiency reveals early onset cognitive impairment and neuropathology associated with brain aging. Hum Mol Genet 25(19):4186–4200.  https://doi.org/10.1093/hmg/ddw252 PubMedGoogle Scholar
  7. Battini R, Alessandri MG, Leuzzi V, Moro F, Tosetti M, Bianchi MC, Cioni G (2006) Arginine:glycine amidinotransferase (AGAT) deficiency in a newborn: early treatment can prevent phenotypic expression of the disease. J Pediatr 148(6):828–830.  https://doi.org/10.1016/j.jpeds.2006.01.043 PubMedGoogle Scholar
  8. Bemben MG, Lamont HS (2005) Creatine supplementation and exercise performance: recent findings. Sports Med 35(2):107–125PubMedGoogle Scholar
  9. Bender A, Beckers J, Schneider I, Holter SM, Haack T, Ruthsatz T, Vogt-Weisenhorn DM, Becker L, Genius J, Rujescu D, Irmler M, Mijalski T, Mader M, Quintanilla-Martinez L, Fuchs H, Gailus-Durner V, de Angelis MH, Wurst W, Schmidt J, Klopstock T (2008) Creatine improves health and survival of mice. Neurobiol Aging 29(9):1404–1411.  https://doi.org/10.1016/j.neurobiolaging.2007.03.001 PubMedGoogle Scholar
  10. Bera S, Wallimann T, Ray S, Ray M (2008) Enzymes of creatine biosynthesis, arginine and methionine metabolism in normal and malignant cells. FEBS J 275(23):5899–5909.  https://doi.org/10.1111/j.1742-4658.2008.06718.x PubMedGoogle Scholar
  11. Black HR, Quallich H, Gareleck CB (1986) Racial differences in serum creatine kinase levels. Am J Med 81(3):479–487PubMedGoogle Scholar
  12. Bloch K, Schoenheimer R (1941) The biological precursors of creatine. J Biol Chem 138(1):167–194Google Scholar
  13. Brewster LM, Coronel CM, Sluiter W, Clark JF, van Montfrans GA (2012) Ethnic differences in tissue creatine kinase activity: an observational study. PLoS One 7(3):e32471.  https://doi.org/10.1371/journal.pone.0032471 PubMedPubMedCentralGoogle Scholar
  14. Brosnan JT, da Silva RP, Brosnan ME (2011) The metabolic burden of creatine synthesis. Amino Acids 40(5):1325–1331.  https://doi.org/10.1007/s00726-011-0853-y PubMedGoogle Scholar
  15. Bundey S, Crawley JM, Edwards JH, Westhead RA (1979) Serum creatine kinase levels in pubertal, mature, pregnant, and postmenopausal women. J Med Genet 16(2):117–121PubMedPubMedCentralGoogle Scholar
  16. Butts J, Jacobs B, Silvis M (2018) Creatine use in sports. Sports Health 10(1):31–34.  https://doi.org/10.1177/1941738117737248 PubMedGoogle Scholar
  17. Candow DG, Chilibeck PD, Forbes SC (2014) Creatine supplementation and aging musculoskeletal health. Endocrine 45(3):354–361.  https://doi.org/10.1007/s12020-013-0070-4 PubMedGoogle Scholar
  18. Carney JM, Smith CD, Carney AM, Butterfield DA (1994) Aging- and oxygen-induced modifications in brain biochemistry and behavior. Ann N Y Acad Sci 738:44–53PubMedGoogle Scholar
  19. Cecil KM, Salomons GS, Ball WS Jr, Wong B, Chuck G, Verhoeven NM, Jakobs C, Degrauw TJ (2001) Irreversible brain creatine deficiency with elevated serum and urine creatine: a creatine transporter defect? Ann Neurol 49(3):401–404PubMedGoogle Scholar
  20. Chae YJ, Chung CE, Kim BJ, Lee MH, Lee H (1998) The gene encoding guanidinoacetate methyltransferase (GAMT) maps to human chromosome 19 at band p13.3 and to mouse chromosome 10. Genomics 49(1):162–164.  https://doi.org/10.1006/geno.1998.5236 PubMedGoogle Scholar
  21. Chevreul E (1835) Sur la composition chimique du bouillon de viandes. J Pharm Sci Access 21:231–242Google Scholar
  22. Chilibeck PD, Chrusch MJ, Chad KE, Shawn Davison K, Burke DG (2005) Creatine monohydrate and resistance training increase bone mineral content and density in older men. J Nutr Health Aging 9(5):352–353PubMedGoogle Scholar
  23. Chilibeck PD, Kaviani M, Candow DG, Zello GA (2017) Effect of creatine supplementation during resistance training on lean tissue mass and muscular strength in older adults: a meta-analysis. Open Access J Sports Med 8:213–226.  https://doi.org/10.2147/OAJSM.S123529 PubMedPubMedCentralGoogle Scholar
  24. Chrusch MJ, Chilibeck PD, Chad KE, Davison KS, Burke DG (2001) Creatine supplementation combined with resistance training in older men. Med Sci Sports Exerc 33(12):2111–2117PubMedGoogle Scholar
  25. Clark JF (1994) The creatine kinase system in smooth muscle. Mol Cell Biochem 133-134:221–232PubMedGoogle Scholar
  26. Conley KE, Jubrias SA, Esselman PC (2000) Oxidative capacity and ageing in human muscle. J Physiol 526(Pt 1):203–210PubMedPubMedCentralGoogle Scholar
  27. Criddle LM (2003) Rhabdomyolysis. Pathophysiology, recognition, and management. Crit Care Nurse 23(6):14–22 24–16, 28 passim; quiz 31–12PubMedGoogle Scholar
  28. Dalbo VJ, Roberts MD, Lockwood CM, Tucker PS, Kreider RB, Kerksick CM (2009) The effects of age on skeletal muscle and the phosphocreatine energy system: can creatine supplementation help older adults. Dyn Med 8:6.  https://doi.org/10.1186/1476-5918-8-6 PubMedPubMedCentralGoogle Scholar
  29. Dance N (1962) Comparison of creatine phosphotransferase from rabbit and brown-hare muscle. Biochem J 84:114–115Google Scholar
  30. David S, Shoemaker M, Haley BE (1998) Abnormal properties of creatine kinase in Alzheimer’s disease brain: correlation of reduced enzyme activity and active site photolabeling with aberrant cytosol-membrane partitioning. Brain Res Mol Brain Res 54(2):276–287PubMedGoogle Scholar
  31. Dawson DM, Fine I (1967) Creatine kinase in human tissues. Arch Neurol 16(2):175–180.  https://doi.org/10.1001/archneur.1967.00470200063005 PubMedGoogle Scholar
  32. Dawson DM, Eppenberger HM, Kaplan NO (1965) Creatine kinase: evidence for a dimeric structure. Biochem Biophys Res Commun 21(4):346–353.  https://doi.org/10.1016/0006-291X(65)90200-7 PubMedGoogle Scholar
  33. Derave W, Eijnde BO, Ramaekers M, Hespel P (2005) No effects of lifelong creatine supplementation on sarcopenia in senescence-accelerated mice (SAMP8). Am J Physiol Endocrinol Metab 289(2):E272–E277.  https://doi.org/10.1152/ajpendo.00039.2005 PubMedGoogle Scholar
  34. Dickinson H, Ellery S, Ireland Z, Larosa D, Snow R, Walker DW (2014) Creatine supplementation during pregnancy: summary of experimental studies suggesting a treatment to improve fetal and neonatal morbidity and reduce mortality in high-risk human pregnancy. BMC Pregnancy Childbirth 14:150.  https://doi.org/10.1186/1471-2393-14-150 PubMedPubMedCentralGoogle Scholar
  35. Duan W, Guo Z, Mattson MP (2001) Brain-derived neurotrophic factor mediates an excitoprotective effect of dietary restriction in mice. J Neurochem 76(2):619–626PubMedGoogle Scholar
  36. Efstratiadis G, Voulgaridou A, Nikiforou D, Kyventidis A, Kourkouni E, Vergoulas G (2007) Rhabdomyolysis updated. Hippokratia 11(3):129–137PubMedPubMedCentralGoogle Scholar
  37. Ellington WR (2000) A dimeric creatine kinase from a sponge: implications in terms of phosphagen kinase evolution. Comp Biochem Physiol B Biochem Mol Biol 126(1):1–7PubMedGoogle Scholar
  38. Eppenberger HM (1994) A brief summary of the history of the detection of creatine kinase isoenzymes. In: Saks VA, Ventura-Clapier R (eds) Cellular bioenergetics: role of coupled Creatine kinases. Springer, Boston, MA, pp 9–11.  https://doi.org/10.1007/978-1-4615-2612-4_2 Google Scholar
  39. Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66(2):375–400Google Scholar
  40. Fukutake T, Hattori T (2001) Normalization of creatine kinase level during pregnancy in idiopathic hyperCKemia. Clin Neurol Neurosurg 103(3):168–170PubMedGoogle Scholar
  41. Galarraga B, Sinclair D, Fahie-Wilson MN, McCrae FC, Hull RG, Ledingham JM (2003) A rare but important cause for a raised serum creatine kinase concentration: two case reports and a literature review. Rheumatology 42(1):186–188PubMedGoogle Scholar
  42. Gerber I, Ap Gwynn I, Alini M, Wallimann T (2005) Stimulatory effects of creatine on metabolic activity, differentiation and mineralization of primary osteoblast-like cells in monolayer and micromass cell cultures. Eur Cell Mater 10:8–22PubMedGoogle Scholar
  43. Gilboa N, Swanson JR (1976) Serum creatine phosphokinase in normal newborns. Arch Dis Child 51(4):283–285PubMedPubMedCentralGoogle Scholar
  44. Gonzalez AM, Uhl GR (1994) ‘Choline/orphan V8-2-1/creatine transporter’ mRNA is expressed in nervous, renal and gastrointestinal systems. Brain Res Mol Brain Res 23(3):266–270PubMedGoogle Scholar
  45. Gotshalk LA, Volek JS, Staron RS, Denegar CR, Hagerman FC, Kraemer WJ (2002) Creatine supplementation improves muscular performance in older men. Med Sci Sports Exerc 34(3):537–543PubMedGoogle Scholar
  46. Gotshalk LA, Kraemer WJ, Mendonca MA, Vingren JL, Kenny AM, Spiering BA, Hatfield DL, Fragala MS, Volek JS (2008) Creatine supplementation improves muscular performance in older women. Eur J Appl Physiol 102(2):223–231.  https://doi.org/10.1007/s00421-007-0580-y PubMedGoogle Scholar
  47. Gozzo ML, Avolio A, Forni F, Agnes S, Colacicco L, Barbaresi G, Castagneto M (1993) Enzymatic determinations in acute rejection after liver transplantation: preliminary report on necrosis index. Clin Chim Acta 214(2):175–184PubMedGoogle Scholar
  48. Graham LT Jr, Shank RP, Werman R, Aprison MH (1967) Distribution of some synaptic transmitter suspects in cat spinal cord: glutamic acid, aspartic acid, gamma-aminobutyric acid, glycine and glutamine. J Neurochem 14(4):465–472PubMedGoogle Scholar
  49. Guerrero-Ontiveros ML, Wallimann T (1998) Creatine supplementation in health and disease. Effects of chronic creatine ingestion in vivo: down-regulation of the expression of creatine transporter isoforms in skeletal muscle. Mol Cell Biochem 184(1–2):427–437PubMedGoogle Scholar
  50. Guimbal C, Kilimann MW (1993) A Na(+)-dependent creatine transporter in rabbit brain, muscle, heart, and kidney. cDNA cloning and functional expression. J Biol Chem 268(12):8418–8421PubMedGoogle Scholar
  51. Hall M, Trojian TH (2013) Creatine supplementation. Curr Sports Med Rep 12(4):240–244.  https://doi.org/10.1249/JSR.0b013e31829cdff2 PubMedGoogle Scholar
  52. Hamburg RJ, Friedman DL, Olson EN, Ma TS, Cortez MD, Goodman C, Puleo PR, Perryman MB (1990) Muscle creatine kinase isoenzyme expression in adult human brain. J Biol Chem 265(11):6403–6409PubMedGoogle Scholar
  53. Hatefi Y, Huennekens FM, Kay LD (1957) Manometric assay and cofactor requirements for serine hydroxymethylase. J Biol Chem 224(1):435–444PubMedGoogle Scholar
  54. Hautman ER, Kokenge AN, Udobi KC, Williams MT, Vorhees CV, Skelton MR (2014) Female mice heterozygous for creatine transporter deficiency show moderate cognitive deficits. J Inherit Metab Dis 37(1):63–68.  https://doi.org/10.1007/s10545-013-9619-x PubMedGoogle Scholar
  55. Havenetidis K (2016) The use of creatine supplements in the military. J R Army Med Corps 162(4):242–248.  https://doi.org/10.1136/jramc-2014-000400 PubMedGoogle Scholar
  56. Hayes J, Veyckemans F, Bissonnette B (2008) Duchenne muscular dystrophy: an old anesthesia problem revisited. Paediatr Anaesth 18(2):100–106.  https://doi.org/10.1111/j.1460-9592.2007.02302.x PubMedGoogle Scholar
  57. Henneberger C, Bard L, King C, Jennings A, Rusakov DA (2013) NMDA receptor activation: two targets for two co-agonists. Neurochem Res 38(6):1156–1162.  https://doi.org/10.1007/s11064-013-0987-2 PubMedGoogle Scholar
  58. Hoberman HD, Sims EA, Peters JH (1948) Creatine and creatinine metabolism in the normal male adult studied with the aid of isotopic nitrogen. J Biol Chem 172(1):45–58PubMedGoogle Scholar
  59. Houmard JA, Costill DL, Mitchell JB, Park SH, Fink WJ, Burns JM (1990) Testosterone, cortisol, and creatine kinase levels in male distance runners during reduced training. Int J Sports Med 11(1):41–45.  https://doi.org/10.1055/s-2007-1024760 PubMedGoogle Scholar
  60. Hultman E, Soderlund K, Timmons JA, Cederblad G, Greenhaff PL (1996) Muscle creatine loading in men. J Appl Physiol 81(1):232–237.  https://doi.org/10.1152/jappl.1996.81.1.232 (1985)PubMedGoogle Scholar
  61. Investigators NN-P (2006) A randomized, double-blind, futility clinical trial of creatine and minocycline in early Parkinson disease. Neurology 66(5):664–671.  https://doi.org/10.1212/01.wnl.0000201252.57661.e1 Google Scholar
  62. Isbrandt D, von Figura K (1995) Cloning and sequence analysis of human guanidinoacetate N-methyltransferase cDNA. Biochim Biophys Acta 1264(3):265–267PubMedGoogle Scholar
  63. Item CB, Stockler-Ipsiroglu S, Stromberger C, Muhl A, Alessandri MG, Bianchi MC, Tosetti M, Fornai F, Cioni G (2001) Arginine:glycine amidinotransferase deficiency: the third inborn error of creatine metabolism in humans. Am J Hum Genet 69(5):1127–1133.  https://doi.org/10.1086/323765 PubMedPubMedCentralGoogle Scholar
  64. Iyengar MR (1984) Creatine kinase as an intracellular regulator. J Muscle Res Cell Motil 5(5):527–534PubMedGoogle Scholar
  65. Iyengar MR, Fluellen CE, Iyengar C (1982) Creatine kinase from the bovine myometrium: purification and characterization. J Muscle Res Cell Motil 3(2):231–246PubMedGoogle Scholar
  66. Izurieta-Munoz H, Gonzales EB, Sumien N (2017) Effects of creatine supplementation on nociception in young male and female mice. Pharmacol Rep 70:316–321.  https://doi.org/10.1016/j.pharep.2017.11.002 PubMedGoogle Scholar
  67. Jamal SM, Eisenberg MJ, Christopoulos S (2004) Rhabdomyolysis associated with hydroxymethylglutaryl-coenzyme a reductase inhibitors. Am Heart J 147(6):956–965.  https://doi.org/10.1016/j.ahj.2003.12.037 PubMedGoogle Scholar
  68. Joncquel-Chevalier Curt M, Voicu PM, Fontaine M, Dessein AF, Porchet N, Mention-Mulliez K, Dobbelaere D, Soto-Ares G, Cheillan D, Vamecq J (2015) Creatine biosynthesis and transport in health and disease. Biochimie 119:146–165.  https://doi.org/10.1016/j.biochi.2015.10.022 PubMedGoogle Scholar
  69. Juhn MS, Tarnopolsky M (1998) Oral creatine supplementation and athletic performance: a critical review. Clin J Sport Med 8(4):286–297PubMedGoogle Scholar
  70. Liebig J (1847) Researches on the chemistry of food, edited from the author’s manuscript by William Gregory. Taylor and Walton, LondonGoogle Scholar
  71. Klopstock T, Elstner M, Bender A (2011) Creatine in mouse models of neurodegeneration and aging. Amino Acids 40(5):1297–1303.  https://doi.org/10.1007/s00726-011-0850-1 PubMedGoogle Scholar
  72. Kuby SA, Noda L, Lardy HA (1954) Adenosinetriphosphate-creatine transphosphorylase. I. Isolation of the crystalline enzyme from rabbit muscle. J Biol Chem 209(1):191–201PubMedGoogle Scholar
  73. Lanza IR, Befroy DE, Kent-Braun JA (2005) Age-related changes in ATP-producing pathways in human skeletal muscle in vivo. J Appl Physiol 99(5):1736–1744.  https://doi.org/10.1152/japplphysiol.00566.2005 (1985)PubMedGoogle Scholar
  74. Larsen RG, Callahan DM, Foulis SA, Kent-Braun JA (2012) Age-related changes in oxidative capacity differ between locomotory muscles and are associated with physical activity behavior. Appl Physiol Nutr Metab 37(1):88–99.  https://doi.org/10.1139/h11-135 PubMedPubMedCentralGoogle Scholar
  75. Law YL, Ong WS, Gillianyap TL, Lim SC, Von Chia E (2009) Effects of two and five days of creatine loading on muscular strength and anaerobic power in trained athletes. J Strength Cond Res 23(3):906–914.  https://doi.org/10.1519/JSC.0b013e3181a06c59 PubMedGoogle Scholar
  76. Lawler JM, Barnes WS, Wu G, Song W, Demaree S (2002) Direct antioxidant properties of creatine. Biochem Biophys Res Commun 290(1):47–52.  https://doi.org/10.1006/bbrc.2001.6164 PubMedGoogle Scholar
  77. Leader A, Amital D, Rubinow A, Amital H (2009) An open-label study adding creatine monohydrate to ongoing medical regimens in patients with the fibromyalgia syndrome. Ann N Y Acad Sci 1173:829–836.  https://doi.org/10.1111/j.1749-6632.2009.04811.x PubMedGoogle Scholar
  78. Liu CY, Lai YC, Wu YC, Tzeng CH, Lee SD (2010) Macroenzyme creatine kinase in the era of modern laboratory medicine. J Chin Med Assoc 73(1):35–39PubMedGoogle Scholar
  79. Maker HS, Lehrer GM, Silides DJ, Weiss C (1973) Regional changes in cerebellar creatine phosphate metabolism during late maturation. Exp Neurol 38(2):295–300.  https://doi.org/10.1016/0014-4886(73)90153-2 PubMedGoogle Scholar
  80. Manos P, Bryan GK, Edmond J (1991) Creatine kinase activity in postnatal rat brain development and in cultured neurons, astrocytes, and oligodendrocytes. J Neurochem 56(6):2101–2107PubMedGoogle Scholar
  81. McCully KK, Fielding RA, Evans WJ, Leigh JS Jr, Posner JD (1993) Relationships between in vivo and in vitro measurements of metabolism in young and old human calf muscles. J Appl Physiol 75(2):813–819.  https://doi.org/10.1152/jappl.1993.75.2.813 (1985)PubMedGoogle Scholar
  82. McMorris T, Mielcarz G, Harris RC, Swain JP, Howard A (2007) Creatine supplementation and cognitive performance in elderly individuals. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn 14(5):517–528.  https://doi.org/10.1080/13825580600788100 PubMedGoogle Scholar
  83. Meltzer HY, Holy PA (1974) Black-white differences in serum creatine phosphokinase (CPK) activity. Clin Chim Acta 54(2):215–224PubMedGoogle Scholar
  84. Mesa JL, Ruiz JR, Gonzalez-Gross MM, Gutierrez Sainz A, Castillo Garzon MJ (2002) Oral creatine supplementation and skeletal muscle metabolism in physical exercise. Sports Med 32(14):903–944PubMedGoogle Scholar
  85. Morandi L, Angelini C, Prelle A, Pini A, Grassi B, Bernardi G, Politano L, Bruno C, De Grandis D, Cudia P, Citterio A (2006) High plasma creatine kinase: review of the literature and proposal for a diagnostic algorithm. Neurol Sci 27(5):303–311.  https://doi.org/10.1007/s10072-006-0701-0 PubMedGoogle Scholar
  86. Morley JE (2015) Nutritional supplementation and sarcopenia: the evidence grows. J Am Med Dir Assoc 16(9):717–719.  https://doi.org/10.1016/j.jamda.2015.06.001 PubMedGoogle Scholar
  87. Morris P (1997) Duchenne muscular dystrophy: a challenge for the anaesthetist. Paediatr Anaesth 7(1):1–4PubMedGoogle Scholar
  88. Muhlebach SM, Gross M, Wirz T, Wallimann T, Perriard JC, Wyss M (1994) Sequence homology and structure predictions of the creatine kinase isoenzymes. Mol Cell Biochem 133-134:245–262PubMedGoogle Scholar
  89. Nabuurs CI, Choe CU, Veltien A, Kan HE, van Loon LJ, Rodenburg RJ, Matschke J, Wieringa B, Kemp GJ, Isbrandt D, Heerschap A (2013) Disturbed energy metabolism and muscular dystrophy caused by pure creatine deficiency are reversible by creatine intake. J Physiol 591(2):571–592.  https://doi.org/10.1113/jphysiol.2012.241760 PubMedGoogle Scholar
  90. Nash SR, Giros B, Kingsmore SF, Rochelle JM, Suter ST, Gregor P, Seldin MF, Caron MG (1994) Cloning, pharmacological characterization, and genomic localization of the human creatine transporter. Receptors Channels 2(2):165–174PubMedGoogle Scholar
  91. Neal RC, Ferdinand KC, Ycas J, Miller E (2009) Relationship of ethnic origin, gender, and age to blood creatine kinase levels. Am J Med 122(1):73–78.  https://doi.org/10.1016/j.amjmed.2008.08.033 PubMedGoogle Scholar
  92. Neves M Jr, Gualano B, Roschel H, Fuller R, Benatti FB, Pinto AL, Lima FR, Pereira RM, Lancha AH Jr, Bonfa E (2011) Beneficial effect of creatine supplementation in knee osteoarthritis. Med Sci Sports Exerc 43(8):1538–1543.  https://doi.org/10.1249/MSS.0b013e3182118592 PubMedGoogle Scholar
  93. Nigro JM, Schweinfest CW, Rajkovic A, Pavlovic J, Jamal S, Dottin RP, Hart JT, Kamarck ME, Rae PM, Carty MD et al (1987) cDNA cloning and mapping of the human creatine kinase M gene to 19q13. Am J Hum Genet 40(2):115–125PubMedPubMedCentralGoogle Scholar
  94. Norwood WI, Ingwall JS, Norwood CR, Fossel ET (1983) Developmental changes of creatine kinase metabolism in rat brain. Am J Phys 244(3):C205–C210Google Scholar
  95. O’Gorman E, Beutner G, Dolder M, Koretsky AP, Brdiczka D, Wallimann T (1997) The role of creatine kinase in inhibition of mitochondrial permeability transition. FEBS Lett 414(2):253–257PubMedGoogle Scholar
  96. Peral MJ, Garcia-Delgado M, Calonge ML, Duran JM, De La Horra MC, Wallimann T, Speer O, Ilundain A (2002) Human, rat and chicken small intestinal Na+ − cl- -creatine transporter: functional, molecular characterization and localization. J Physiol 545. (Pt 1:133–144PubMedPubMedCentralGoogle Scholar
  97. Perryman MB, Kerner SA, Bohlmeyer TJ, Roberts R (1986) Isolation and sequence analysis of a full-length cDNA for human M creatine kinase. Biochem Biophys Res Commun 140(3):981–989.  https://doi.org/10.1016/0006-291X(86)90732-1 PubMedGoogle Scholar
  98. Persky AM, Brazeau GA (2001) Clinical pharmacology of the dietary supplement creatine monohydrate. Pharmacol Rev 53(2):161–176PubMedGoogle Scholar
  99. Pfefferbaum A, Adalsteinsson E, Spielman D, Sullivan EV, Lim KO (1999) In vivo spectroscopic quantification of the N-acetyl moiety, creatine, and choline from large volumes of brain gray and white matter: effects of normal aging. Magn Reson Med 41(2):276–284Google Scholar
  100. Qin W, Khuchua Z, Cheng J, Boero J, Payne RM, Strauss AW (1998) Molecular characterization of the creatine kinases and some historical perspectives. Mol Cell Biochem 184(1–2):153–167PubMedGoogle Scholar
  101. Rapoport S (1978) 51 to 49 years ago: Lohmann and ATP. Trends Biochem Sci 3(3):163.  https://doi.org/10.1016/S0968-0004(78)90392-4 Google Scholar
  102. Rasmussen UF, Krustrup P, Kjaer M, Rasmussen HN (2003) Experimental evidence against the mitochondrial theory of aging. A study of isolated human skeletal muscle mitochondria. Exp Gerontol 38(8):877–886PubMedGoogle Scholar
  103. Rudolph N, Gross RT (1966) Creatine phosphokinase activity in serum of newborn infants as an indicator of fetal trauma during birth. Pediatrics 38(6):1039–1046PubMedGoogle Scholar
  104. Saks VA, Rosenshtraukh LV, Smirnov VN, Chazov EI (1978) Role of creatine phosphokinase in cellular function and metabolism. Can J Physiol Pharmacol 56(5):691–706PubMedGoogle Scholar
  105. Salomons GS, van Dooren SJ, Verhoeven NM, Cecil KM, Ball WS, Degrauw TJ, Jakobs C (2001) X-linked creatine-transporter gene (SLC6A8) defect: a new creatine-deficiency syndrome. Am J Hum Genet 68(6):1497–1500.  https://doi.org/10.1086/320595 PubMedPubMedCentralGoogle Scholar
  106. Schlattner U, Tokarska-Schlattner M, Wallimann T (2006) Mitochondrial creatine kinase in human health and disease. Biochim Biophys Acta 1762(2):164–180.  https://doi.org/10.1016/j.bbadis.2005.09.004 PubMedGoogle Scholar
  107. Schlegel J, Wyss M, Schurch U, Schnyder T, Quest A, Wegmann G, Eppenberger HM, Wallimann T (1988) Mitochondrial creatine kinase from cardiac muscle and brain are two distinct isoenzymes but both form octameric molecules. J Biol Chem 263(32):16963–16969PubMedGoogle Scholar
  108. Schumann G, Klauke R (2003) New IFCC reference procedures for the determination of catalytic activity concentrations of five enzymes in serum: preliminary upper reference limits obtained in hospitalized subjects. Clin Chim Acta 327(1–2):69–79PubMedGoogle Scholar
  109. Shiber JR, Mattu A (2002) Serum phosphate abnormalities in the emergency department. J Emerg Med 23(4):395–400PubMedGoogle Scholar
  110. Short KR, Bigelow ML, Kahl J, Singh R, Coenen-Schimke J, Raghavakaimal S, Nair KS (2005) Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci U S A 102(15):5618–5623.  https://doi.org/10.1073/pnas.0501559102 PubMedPubMedCentralGoogle Scholar
  111. Skelton MR, Schaefer TL, Graham DL, Degrauw TJ, Clark JF, Williams MT, Vorhees CV (2011) Creatine transporter (CrT; Slc6a8) knockout mice as a model of human CrT deficiency. PLoS One 6(1):e16187.  https://doi.org/10.1371/journal.pone.0016187 PubMedPubMedCentralGoogle Scholar
  112. Smith CD, Carney JM, Starke-Reed PE, Oliver CN, Stadtman ER, Floyd RA, Markesbery WR (1991) Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci U S A 88(23):10540–10543PubMedPubMedCentralGoogle Scholar
  113. Smith SA, Montain SJ, Matott RP, Zientara GP, Jolesz FA, Fielding RA (1998) Creatine supplementation and age influence muscle metabolism during exercise. J Appl Physiol 85(4):1349–1356.  https://doi.org/10.1152/jappl.1998.85.4.1349 (1985)PubMedGoogle Scholar
  114. Smith RN, Agharkar AS, Gonzales EB (2014) A review of creatine supplementation in age-related diseases: more than a supplement for athletes. F1000Res 3:222.  https://doi.org/10.12688/f1000research.5218.1 PubMedPubMedCentralGoogle Scholar
  115. Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273:59–63PubMedPubMedCentralGoogle Scholar
  116. Sora I, Richman J, Santoro G, Wei H, Wang Y, Vanderah T, Horvath R, Nguyen M, Waite S, Roeske WR et al (1994) The cloning and expression of a human creatine transporter. Biochem Biophys Res Commun 204(1):419–427PubMedGoogle Scholar
  117. Stockler S, Holzbach U, Hanefeld F, Marquardt I, Helms G, Requart M, Hanicke W, Frahm J (1994) Creatine deficiency in the brain: a new, treatable inborn error of metabolism. Pediatr Res 36(3):409–413.  https://doi.org/10.1203/00006450-199409000-00023 PubMedGoogle Scholar
  118. Stockler S, Isbrandt D, Hanefeld F, Schmidt B, von Figura K (1996) Guanidinoacetate methyltransferase deficiency: the first inborn error of creatine metabolism in man. Am J Hum Genet 58(5):914–922PubMedPubMedCentralGoogle Scholar
  119. Stockler-Ipsiroglu S, van Karnebeek C, Longo N, Korenke GC, Mercimek-Mahmutoglu S, Marquart I, Barshop B, Grolik C, Schlune A, Angle B, Araujo HC, Coskun T, Diogo L, Geraghty M, Haliloglu G, Konstantopoulou V, Leuzzi V, Levtova A, Mackenzie J, Maranda B, Mhanni AA, Mitchell G, Morris A, Newlove T, Renaud D, Scaglia F, Valayannopoulos V, van Spronsen FJ, Verbruggen KT, Yuskiv N, Nyhan W, Schulze A (2014) Guanidinoacetate methyltransferase (GAMT) deficiency: outcomes in 48 individuals and recommendations for diagnosis, treatment and monitoring. Mol Genet Metab 111(1):16–25.  https://doi.org/10.1016/j.ymgme.2013.10.018 PubMedGoogle Scholar
  120. Stout JR, Sue Graves B, Cramer JT, Goldstein ER, Costa PB, Smith AE, Walter AA (2007) Effects of creatine supplementation on the onset of neuromuscular fatigue threshold and muscle strength in elderly men and women (64–86 years). J Nutr Health Aging 11(6):459–464PubMedGoogle Scholar
  121. Suzuki T, Furukohri T (1994) Evolution of phosphagen kinase. Primary structure of glycocyamine kinase and arginine kinase from invertebrates. J Mol Biol 237(3):353–357.  https://doi.org/10.1006/jmbi.1994.1237 PubMedGoogle Scholar
  122. Thakur V, Desalvo J, McGrath H Jr, Weed S, Garcia C (1996) Case report: polymyositis-induced myoglobinuric acute renal failure. Am J Med Sci 312(2):85–87PubMedGoogle Scholar
  123. Thompson PD, Clarkson PM, Rosenson RS, National Lipid Association Statin Safety Task Force Muscle Safety Expert Panel (2006) An assessment of statin safety by muscle experts. Am J Cardiol 97(8A):69C–76C.  https://doi.org/10.1016/j.amjcard.2005.12.013 PubMedGoogle Scholar
  124. Totsuka M, Nakaji S, Suzuki K, Sugawara K, Sato K (2002) Break point of serum creatine kinase release after endurance exercise. J Appl Physiol 93(4):1280–1286.  https://doi.org/10.1152/japplphysiol.01270.2001 (1985)PubMedGoogle Scholar
  125. van de Kamp JM, Mancini GM, Salomons GS (2014) X-linked creatine transporter deficiency: clinical aspects and pathophysiology. J Inherit Metab Dis 37(5):715–733.  https://doi.org/10.1007/s10545-014-9713-8 PubMedGoogle Scholar
  126. Vanholder R, Sever MS, Erek E, Lameire N (2000) Rhabdomyolysis. J Am Soc Nephrol 11(8):1553–1561PubMedGoogle Scholar
  127. Ventura-Clapier R, Saks VA, Vassort G, Lauer C, Elizarova GV (1987) Reversible MM-creatine kinase binding to cardiac myofibrils. Am J Phys 253(3 Pt 1):C444–C455.  https://doi.org/10.1152/ajpcell.1987.253.3.C444 Google Scholar
  128. Walker JB (1979) Creatine: biosynthesis, regulation, and function. Adv Enzymol Relat Areas Mol Biol 50:177–242PubMedGoogle Scholar
  129. Wallimann T, Hemmer W (1994) Creatine kinase in non-muscle tissues and cells. Mol Cell Biochem 133-134:193–220PubMedGoogle Scholar
  130. Wallimann T, Schnyder T, Schlegel J, Wyss M, Wegmann G, Rossi AM, Hemmer W, Eppenberger HM, Quest AF (1989) Subcellular compartmentation of creatine kinase isoenzymes, regulation of CK and octameric structure of mitochondrial CK: important aspects of the phosphoryl-creatine circuit. Prog Clin Biol Res 315:159–176PubMedGoogle Scholar
  131. Wallimann T, Tokarska-Schlattner M, Schlattner U (2011) The creatine kinase system and pleiotropic effects of creatine. Amino Acids 40(5):1271–1296.  https://doi.org/10.1007/s00726-011-0877-3 PubMedPubMedCentralGoogle Scholar
  132. Warren JD, Blumbergs PC, Thompson PD (2002) Rhabdomyolysis: a review. Muscle Nerve 25(3):332–347PubMedGoogle Scholar
  133. Wong ET, Cobb C, Umehara MK, Wolff GA, Haywood LJ, Greenberg T, Shaw ST Jr (1983) Heterogeneity of serum creatine kinase activity among racial and gender groups of the population. Am J Clin Pathol 79(5):582–586PubMedGoogle Scholar
  134. Wu G, Jaeger LA, Bazer FW, Rhoads JM (2004) Arginine deficiency in preterm infants: biochemical mechanisms and nutritional implications. J Nutr Biochem 15(8):442–451.  https://doi.org/10.1016/j.jnutbio.2003.11.010 PubMedGoogle Scholar
  135. Wyss JM, Chambless BD, Kadish I, van Groen T (2000) Age-related decline in water maze learning and memory in rats: strain differences. Neurobiol Aging 21(5):671–681PubMedGoogle Scholar
  136. Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Crystal structure of a bacterial homologue of Na+/cl--dependent neurotransmitter transporters. Nature 437(7056):215–223.  https://doi.org/10.1038/nature03978 PubMedGoogle Scholar
  137. Yoshimine T, Morimoto K, Homburger HA, Yanagihara T (1983) Immunohistochemical localization of creatine kinase BB-isoenzyme in human brain: comparison with tubulin and astroprotein. Brain Res 265(1):101–108PubMedGoogle Scholar
  138. Zeisel SH (1999) Regulation of “nutraceuticals”. Science 285(5435):1853–1855PubMedGoogle Scholar
  139. Zellweger H, Antonik A (1975) Newborn screening for Duchenne muscular dystrophy. Pediatrics 55(1):30–34PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Nathalie Sumien
    • 1
  • Ritu A. Shetty
    • 1
  • Eric B. Gonzales
    • 2
    Email author
  1. 1.Department of Pharmacology and NeuroscienceUniversity of North Texas Health Science CenterFort WorthUSA
  2. 2.Department of Medical EducationTCU and UNTHSC School of MedicineFort WorthUSA

Personalised recommendations