Advertisement

Key Age-Imposed Signaling Changes That Are Responsible for the Decline of Stem Cell Function

  • Melod Mehdipour
  • Yutong Liu
  • Chao Liu
  • Binod Kumar
  • Daehwan Kim
  • Ranveer Gathwala
  • Irina M. ConboyEmail author
Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 90)

Abstract

This chapter analyzes recent developments in the field of signal transduction of ageing with the focus on the age-imposed changes in TGF-beta/pSmad, Notch, Wnt/beta-catenin, and Jak/Stat networks. Specifically, this chapter delineates how the above-mentioned evolutionary-conserved morphogenic signaling pathways operate in young versus aged mammalian tissues, with insights into how the age-specific broad decline of stem cell function is precipitated by the deregulation of these key cell signaling networks. This chapter also provides perspectives onto the development of defined therapeutic approaches that aim to calibrate intensity of the determinant signal transduction to health-youth, thereby rejuvenating multiple tissues in older people.

Keywords

Ageing Signaling pathways Altered signaling cascades Stem cells Stem cell nice TGF-β Smad Delta/Notch Wnt Beta-catenin Jak/STAT MAPK Cell growth Self-renewal Differentiation Inflammation Tissue injury Tissue regeneration Tissue health 

Notes

Acknowledgement

We thank Michael J. Conboy for helpful reading and editing the manuscript.

References

  1. Aaronson DS, Horvath CM (2002) A road map for those who don’t know JAK-STAT. Science (80-) 296:1653 LP-1655Google Scholar
  2. Allen RE, Boxhorn LK (1989) Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor-beta, insulin-like growth factor I, and fibroblast growth factor. J Cell Physiol 138:311–315.  https://doi.org/10.1002/jcp.1041380213 CrossRefPubMedGoogle Scholar
  3. Alliston T, Choy L, Ducy P et al (2001) TGF-β-induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation. EMBO J 20:2254–2272.  https://doi.org/10.1093/emboj/20.9.2254 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Arthur HM, Goumans M-J, Reiter JF (2009) TGF-β signaling in vascular biology and dysfunction. Cell Res 19:116–127.  https://doi.org/10.1038/cr.2008.326 CrossRefGoogle Scholar
  5. Ashton KJ, Willems L, Holmgren K et al (2006) Age-associated shifts in cardiac gene transcription and transcriptional responses to ischemic stress. Exp Gerontol 41:189–204.  https://doi.org/10.1016/j.exger.2005.10.013 CrossRefPubMedGoogle Scholar
  6. Banerjee S, Biehl A, Gadina M et al (2017) JAK-STAT signaling as a target for inflammatory and autoimmune diseases: current and future prospects. Drugs 77:521–546.  https://doi.org/10.1007/s40265-017-0701-9 CrossRefPubMedGoogle Scholar
  7. Barandon L, Couffinhal T, Ezan J et al (2003) Reduction of infarct size and prevention of cardiac rupture in transgenic mice overexpressing FrzA. Circulation 108:2282–2289.  https://doi.org/10.1161/01.CIR.0000093186.22847.4C CrossRefPubMedGoogle Scholar
  8. Barandon L, Dufourcq P, Costet P et al (2005) Involvement of FrzA/sFRP-1 and the Wnt/Frizzled pathway in ischemic preconditioning. Circ Res 96:1299–1306.  https://doi.org/10.1161/01.RES.0000171895.06914.2c CrossRefPubMedGoogle Scholar
  9. Beck LS, DeGuzman L, Lee WP et al (1993) One systemic administration of transforming growth factor-beta 1 reverses age- or glucocorticoid-impaired wound healing. J Clin Invest 92:2841–2849.  https://doi.org/10.1172/JCI116904 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bernasconi P, Torchiana E, Confalonieri P et al (1995) Expression of transforming growth factor-??1 in dystrophic patient muscles correlates with fibrosis. Pathogenetic role of a fibrogenic cytokine. J Clin Invest 96:1137–1144.  https://doi.org/10.1172/JCI118101 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Blaney Davidson EN, Scharstuhl A, Vitters EL et al (2005) Reduced transforming growth factor-beta signaling in cartilage of old mice: role in impaired repair capacity. Arthritis Res Ther 7:R1338–R1347.  https://doi.org/10.1186/ar1833 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Border WA, Noble NA (1994) Transforming growth factor beta in tissue fibrosis. N Engl J Med 331:1286–1292.  https://doi.org/10.1056/NEJM199411103311907 CrossRefPubMedGoogle Scholar
  13. Brack AS, Rando TA (2007) Intrinsic changes and extrinsic influences of myogenic stem cell function during ageing. Stem Cell Rev 3:226–237.  https://doi.org/10.1007/s12015-007-9000-2 CrossRefPubMedGoogle Scholar
  14. Brack AS, Conboy MJ, Roy S, et al (2007) Increased Wnt signaling during ageing alters muscle stem cell fate. Science (80- ) 129:2865.  https://doi.org/10.1126/science.1144090
  15. Brack AS, Conboy IM, Conboy MJ et al (2008) A temporal switch from notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis. Cell Stem Cell 2:50–59.  https://doi.org/10.1016/j.stem.2007.10.006 CrossRefPubMedGoogle Scholar
  16. Brun CE, Rudnicki MA (2015) GDF11 and the mythical fountain of youth. Cell Metab 22:54–56.  https://doi.org/10.1016/j.cmet.2015.05.009 CrossRefPubMedGoogle Scholar
  17. Butovsky O, Jedrychowski MP, Moore CS et al (2014) Identification of a unique TGF-[beta]-dependent molecular and functional signature in microglia. Nat Neurosci 17:131–143.  https://doi.org/10.1038/nn.3599 CrossRefPubMedGoogle Scholar
  18. Canalis E, Giustina A, Bilezikian JP (2007) Mechanisms of anabolic therapies for osteoporosis. N Engl J Med 357:905–916.  https://doi.org/10.1056/NEJMra067395 CrossRefPubMedGoogle Scholar
  19. Carey KA, Farnfield MM, Tarquinio SD, Cameron-Smith D (2007) Impaired expression of Notch signaling genes in aged human skeletal muscle. J Gerontol A Biol Sci Med Sci 62:9–17.  https://doi.org/10.1093/gerona/62.1.9 CrossRefPubMedGoogle Scholar
  20. Carlson ME, Hsu M, Conboy IM (2008) Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells. Nature 454:528–532.  https://doi.org/10.1038/nature07034 CrossRefPubMedGoogle Scholar
  21. Carlson ME, Conboy MJ, Hsu M et al (2009a) Relative roles of TGF-β1 and Wnt in the systemic regulation and ageing of satellite cell responses. Ageing Cell 8:676–689.  https://doi.org/10.1111/j.1474-9726.2009.00517.x CrossRefGoogle Scholar
  22. Carlson ME, Conboy MJ, Hsu M et al (2009b) Relative roles of TGF-beta1 and Wnt in the systemic regulation and ageing of satellite cell responses. Ageing Cell 8:676–689.  https://doi.org/10.1111/j.1474-9726.2009.00517.x CrossRefGoogle Scholar
  23. Carlson ME, Suetta C, Conboy MJ et al (2009c) Molecular ageing and rejuvenation of human muscle stem cells. EMBO Mol Med 1:381–391.  https://doi.org/10.1002/emmm.200900045 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Castilho RM, Squarize CH, Chodosh LA et al (2009) mTOR mediates Wnt-induced epidermal stem cell exhaustion and ageing. Cell Stem Cell 5:279–289.  https://doi.org/10.1016/j.stem.2009.06.017 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Chakkalakal JV, Jones KM, Basson MA, Brack AS (2012) The aged niche disrupts muscle stem cell quiescence. Nature 490:355–360.  https://doi.org/10.1038/nature11438 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40CrossRefGoogle Scholar
  27. Chazaud B, Mouchiroud G (2018) Inflamm-ageing: STAT3 signaling pushes muscle stem cells off balance. Cell Stem Cell 15:401–402.  https://doi.org/10.1016/j.stem.2014.09.010 CrossRefGoogle Scholar
  28. Chen CR, Kang Y, Siegel PM, Massagué J (2002) E2F4/5 and p107 as Smad cofactors linking the TGFβ receptor to c-myc repression. Cell 110:19–32.  https://doi.org/10.1016/S0092-8674(02)00801-2 CrossRefPubMedGoogle Scholar
  29. Chen Y, Whetstone HC, Lin AC et al (2007) Beta-catenin signaling plays a disparate role in different phases of fracture repair: implications for therapy to improve bone healing. PLoS Med 4:1216–1229.  https://doi.org/10.1371/journal.pmed.0040249 CrossRefGoogle Scholar
  30. Claudio D, Luciano C, Lorenzo M et al (1998) Members of the JAK/STAT proteins are expressed and regulated during development in the mammalian forebrain. J Neurosci Res 54:320–330.  https://doi.org/10.1002/(SICI)1097-4547(19981101)54:3<320::AID-JNR3>3.0.CO;2-R
  31. Cohn RD, van Erp C, Habashi JP et al (2007) Angiotensin II type 1 receptor blockade attenuates TGF-β–induced failure of muscle regeneration in multiple myopathic states. Nat Med 13:204–210.  https://doi.org/10.1038/nm1536 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Conboy IM, Rando TA (2002) The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell 3:397–409.  https://doi.org/10.1016/S1534-5807(02)00254-X CrossRefPubMedGoogle Scholar
  33. Conboy IM, Rando TA (2005) Ageing, stem cells and tissue regeneration: lessons from muscle. Cell Cycle 4:407–410.  https://doi.org/10.4161/cc.4.3.1518 CrossRefPubMedGoogle Scholar
  34. Conboy IM, Rando TA (2012) Heterochronic parabiosis for the study of the effects of ageing on stem cells and their niches. Cell Cycle 11:2260–2267CrossRefGoogle Scholar
  35. Conboy IM, Conboy MJ, Smythe GM, Rando TA (2003) Notch-mediated restoration of regenerative potential to aged muscle. Science 302:1575–1577.  https://doi.org/10.1126/science.1087573 CrossRefPubMedGoogle Scholar
  36. Conboy IM et al (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433:760–764.  https://doi.org/10.1038/nature03260 CrossRefPubMedGoogle Scholar
  37. Conboy IM, Conboy MJ, Rebo J (2015) Systemic problems: a perspective on stem cell ageing and rejuvenation. Ageing (Albany NY) 7:754–765Google Scholar
  38. Coppé J-P, Patil CK, Rodier F et al (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:2853–2868.  https://doi.org/10.1371/journal.pbio.0060301 CrossRefPubMedGoogle Scholar
  39. Croker BA, Kiu H, Nicholson SE (2008) SOCS regulation of the JAK/STAT signalling pathway. Semin Cell Dev Biol 19:414–422.  https://doi.org/10.1016/j.semcdb.2008.07.010 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Cunha SI, Pietras K (2011) ALK1 as an emerging target for antiangiogenic therapy of cancer. Blood 117:6999–7006CrossRefGoogle Scholar
  41. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425:577–584.  https://doi.org/10.1038/nature02006 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Doles JD, Olwin BB (2014) The impact of JAK-STAT signaling on muscle regeneration. Nat Med 20:1094CrossRefGoogle Scholar
  43. Doyle KP, Cekanaviciute E, Mamer LE, Buckwalter MS (2010) TGFβ signaling in the brain increases with ageing and signals to astrocytes and innate immune cells in the weeks after stroke. J Neuroinflammation 7:62.  https://doi.org/10.1186/1742-2094-7-62 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Dumont NA, Wang YX, Rudnicki MA (2015) Intrinsic and extrinsic mechanisms regulating satellite cell function. Development 142:1572–1581.  https://doi.org/10.1242/dev.114223 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Egerman MA, Cadena SM, Gilbert JA et al (2015) GDF11 increases with age and inhibits skeletal muscle regeneration. Cell Metab 22:164–174.  https://doi.org/10.1016/j.cmet.2015.05.010 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Elabd C, Cousin W, Upadhyayula P et al (2014) Oxytocin is an age-specific circulating hormone that is necessary for muscle maintenance and regeneration. Nat Commun 5.  https://doi.org/10.1038/ncomms5082
  47. Engler A, Ronaldo C, Giachino C et al (2018) Notch2 signaling maintains NSC quiescence in the murine ventricular-subventricular zone. Cell Rep 22:992–1002.  https://doi.org/10.1016/j.celrep.2017.12.094 CrossRefPubMedGoogle Scholar
  48. Erlebacher A, Derynck R (1996) Increased expression of TGF-β2 in osteoblasts results in an osteoporosis-like phenotype. J Cell Biol 132:195–210.  https://doi.org/10.1083/jcb.132.1.195 CrossRefPubMedGoogle Scholar
  49. Gardner S, Alzhanov D, Knollman P et al (2011) TGF-β inhibits muscle differentiation by blocking autocrine signaling pathways initiated by IGF-II. Mol Endocrinol 25:128–137.  https://doi.org/10.1210/me.2010-0292 CrossRefPubMedGoogle Scholar
  50. Garza JC, Guo M, Zhang W, Lu XY (2008) Leptin increases adult hippocampal neurogenesis in vivo and in vitro. J Biol Chem 283:18238–18247.  https://doi.org/10.1074/jbc.M800053200 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Gillespie MA, Le Grand F, Scimè A et al (2009) p38-γ-dependent gene silencing restricts entry into the myogenic differentiation program. J Cell Biol 187:991–1005.  https://doi.org/10.1083/jcb.200907037 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Gómez-Nicola D, Valle-Argos B, Pallas-Bazarra N, Nieto-Sampedro M (2011) Interleukin-15 regulates proliferation and self-renewal of adult neural stem cells. Mol Biol Cell 22:1960–1970.  https://doi.org/10.1091/mbc.E11-01-0053 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Goumans MJ, Mummery C (2000) Functional analysis of the TGFbeta receptor/Smad pathway through gene ablation in mice. Int J Dev Biol 44:253–265PubMedGoogle Scholar
  54. Gredinger E, Gerber AN, Tamir Y et al (1998) Mitogen-activated protein kinase pathway is involved in the differentiation of muscle cells. J Biol Chem 273:10436–10444CrossRefGoogle Scholar
  55. Greenblatt MB, Shim JH, Zou W et al (2010) The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. J Clin Invest 120:2457–2473.  https://doi.org/10.1172/JCI42285 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Hamanoue M, Morioka K, Ohsawa I et al (2016) Cell-permeable p38 MAP kinase promotes migration of adult neural stem/progenitor cells. Sci Rep 6:1–10.  https://doi.org/10.1038/srep24279 CrossRefGoogle Scholar
  57. Hammers DW, Merscham-Banda M, Hsiao JY et al (2017) Supraphysiological levels of GDF11 induce striated muscle atrophy. EMBO Mol Med 9:531–544.  https://doi.org/10.15252/emmm.201607231 CrossRefPubMedPubMedCentralGoogle Scholar
  58. He XC, Zhang J, Tong W-G et al (2004) BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nat Genet 36:1117–1121.  https://doi.org/10.1038/ng1430 CrossRefPubMedGoogle Scholar
  59. Hee KY, Jee-In C, Goo WH et al (2010) Differential regulation of proliferation and differentiation in neural precursor cells by the Jak pathway. Stem Cells 28:1816–1828.  https://doi.org/10.1002/stem.511 CrossRefGoogle Scholar
  60. Heinrich PC, Behrmann I, Haan S et al (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374:1 LP-20CrossRefGoogle Scholar
  61. Heldin CH, Miyazono K, ten Dijke P (1997) TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390:465–471.  https://doi.org/10.1038/37284 CrossRefPubMedGoogle Scholar
  62. Hensley K, Floyd RA, Zheng NY et al (1999) p38 kinase is activated in the Alzheimer’s disease brain. J Neurochem 72:2053–2058.  https://doi.org/10.1046/j.1471-4159.1999.0722053.x CrossRefPubMedGoogle Scholar
  63. Hoffman J, Kuhnert F, Davis CR, Kuo CJ (2004) Wnts as essential growth factors for the adult small intestine and colon. Cell Cycle 3:554–557PubMedGoogle Scholar
  64. Holley RW, Armour R, Baldwin JH, Greenfield S (1983) Activity of a kidney epithelial cell growth inhibitor pn lung and mammary cells. Cell Biol Int Rep 7:141–147CrossRefGoogle Scholar
  65. Hori K, Sen A, Artavanis-Tsakonas S (2013) Notch signaling at a glance. J Cell Sci 126:2135–2140.  https://doi.org/10.1242/jcs.127308 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Igaz P, Tóth S, Falus A (2001) Biological and clinical significance of the JAK-STAT pathway; lessons from knockout mice. Inflamm Res 50:435–441.  https://doi.org/10.1007/PL00000267 CrossRefPubMedGoogle Scholar
  67. Ito M, Yang Z, Andl T et al (2007) Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 447:316–320.  https://doi.org/10.1038/nature05766 CrossRefPubMedGoogle Scholar
  68. Ivashkiv LB (2012) Crosstalk with the Jak-STAT pathway in inflammation. In: Jak-Stat signaling: from basics to disease, pp 353–370Google Scholar
  69. Jain N, Zhang T, Fong SL et al (1998) Repression of Stat3 activity by activation of mitogen-activated protein kinase (MAPK). Oncogene 17:3157CrossRefGoogle Scholar
  70. Jakobsson L, van Meeteren LA (2013) Transforming growth factor Β family members in regulation of vascular function: in the light of vascular conditional knockouts. Exp Cell Res 319:1264–1270CrossRefGoogle Scholar
  71. Jang Y-N, Baik EJ (2013) JAK-STAT pathway and myogenic differentiation. JAK-STAT 2:e23282.  https://doi.org/10.4161/jkst.23282 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Jang Y-N, Lee IJ, Park MC, Baik EJ (2012) Role of JAK3 in myogenic differentiation. Cell Signal 24:742–749.  https://doi.org/10.1016/j.cellsig.2011.11.009 CrossRefPubMedGoogle Scholar
  73. Janzen V, Forkert R, Fleming HE et al (2006) Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443:421–426.  https://doi.org/10.1038/nature05159 CrossRefPubMedGoogle Scholar
  74. Jatiani SS, Baker SJ, Silverman LR, Reddy EP (2010) JAK/STAT pathways in cytokine signaling and myeloproliferative disorders: approaches for targeted therapies. Genes Cancer 1:979–993.  https://doi.org/10.1177/1947601910397187 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Jeanneteau F, Deinhardt K (2011) Fine-tuning MAPK signaling in the brain: The role of MKP-1. Commun Integr Biol 4:281–283.  https://doi.org/10.4161/cib.4.3.14766 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Jiang H, Patel PH, Kohlmaier A et al (2009) Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila Midgut. Cell 137:1343–1355.  https://doi.org/10.1016/j.cell.2009.05.014 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Jiao P, Feng B, Li Y et al (2013) Hepatic ERK activity plays a role in energy metabolism. Mol Cell Endocrinol 375:157–166.  https://doi.org/10.1016/j.mce.2013.05.021 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Jones NC, Fedorov YV, Rosenthal RS, Olwin BB (2001) ERK1/2 is required for myoblast proliferation but is dispensable for muscle gene expression and cell fusion. J Cell Physiol 186:104–115.  https://doi.org/10.1002/1097-4652(200101)186:1<104::AID-JCP1015>3.0.CO;2-0 CrossRefPubMedGoogle Scholar
  79. Joyce ME, Roberts AB, Sporn MB, Bolander ME (1990) Transforming growth factor-β and the initiation of chondrogenesis and osteogenesis in the rat femur. J Cell Biol 110:2195–2207.  https://doi.org/10.1083/jcb.110.6.2195 CrossRefPubMedGoogle Scholar
  80. Kaminska B, Wesolowska A, Danilkiewicz M (2005) TGF beta signalling and its role in tumour pathogenesis. Acta Biochim Pol 52:329–337PubMedGoogle Scholar
  81. Kang Y, Chen CR, Massagué J (2003) A self-enabling TGFβ response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol Cell 11:915–926.  https://doi.org/10.1016/S1097-2765(03)00109-6 CrossRefPubMedGoogle Scholar
  82. Kastner S, Elias MC, Rivera AJ, Yablonka-Reuveni Z (2000) Gene expression patterns of the fibroblast growth factors and their receptors during myogenesis of rat satellite cells. J Histochem Cytochem 48:1079–1096.  https://doi.org/10.1177/002215540004800805 CrossRefPubMedGoogle Scholar
  83. Katsimpardi L, Litterman NK, Schein PA et al (2014) Vascular and neurogenic rejuvenation of the ageing mouse brain by young systemic factors. Science (80- ) 344:630–634.  https://doi.org/10.1126/science.1251141 CrossRefGoogle Scholar
  84. Kingsley DM (1994) The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 8:133–146.  https://doi.org/10.1101/gad.8.2.133 CrossRefPubMedGoogle Scholar
  85. Kirstetter P, Anderson K, Porse BT et al (2006) Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nat Immunol 7:1048–1056.  https://doi.org/10.1038/ni1381 CrossRefPubMedGoogle Scholar
  86. Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW (2002) Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 285:1–24.  https://doi.org/10.1016/S0378-1119(02)00398-0 CrossRefPubMedGoogle Scholar
  87. Knabbe C, Lippman ME, Wakefield LM et al (1987) Evidence that transforming growth factor-beta is a hormonally regulated negative growth factor in human breast cancer cells. Cell 48:417–428CrossRefGoogle Scholar
  88. Kondo Y, Muto A, Kudo FA et al (2010) Age-related Notch-4 quiescence is associated with altered wall remodeling during vein graft adaptation. J Surg Res 171:e149–e160.  https://doi.org/10.1016/j.jss.2011.06.036 CrossRefGoogle Scholar
  89. Kortlever RM, Higgins PJ, Bernards R (2006) Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nat Cell Biol 8:878–884.  https://doi.org/10.1038/ncb1448 CrossRefGoogle Scholar
  90. Kuhnert F, Davis CR, Wang H-T et al (2004) Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1. Proc Natl Acad Sci 101:266–271.  https://doi.org/10.1073/pnas.2536800100 CrossRefPubMedGoogle Scholar
  91. Kuilman T, Michaloglou C, Vredeveld LCW et al (2008) Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133:1019–1031.  https://doi.org/10.1016/j.cell.2008.03.039 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Li F, Chong ZZ, Maiese K (2006) Winding through the WNT pathway during cellular development and demise. Histol Histopathol 21:103–124PubMedPubMedCentralGoogle Scholar
  93. Lie D-C, Colamarino SA, Song H-J et al (2005) Wnt signalling regulates adult hippocampal neurogenesis. Nature 437:1370–1375.  https://doi.org/10.1038/nature04108 CrossRefPubMedGoogle Scholar
  94. Liu D, Black BL, Derynck R (2001) TGF-β inhibits muscle differentiation through functional repression of myogenic transcription factors by Smad3. Genes Dev 15:2950–2966.  https://doi.org/10.1101/gad.925901 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Liu H, Fergusson MM, Castilho RM et al (2007) Augmented Wnt signaling in a mammalian model of accelerated ageing. Science (80- ) 317:803–806.  https://doi.org/10.1126/science.1143578 CrossRefGoogle Scholar
  96. Lluís F, Perdiguero E, Nebreda AR, Muñoz-Cánoves P (2006) Regulation of skeletal muscle gene expression by p38 MAP kinases. Trends Cell Biol 16:36–44CrossRefGoogle Scholar
  97. Lodge PA, Sriram S (1996) Regulation of microglial activation by TGF-beta, IL-10, and CSF-1. J Leukoc Biol 60:502–508CrossRefGoogle Scholar
  98. Loffredo FS, Steinhauser ML, Jay SM et al (2013) Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell 153:828–839.  https://doi.org/10.1016/j.cell.2013.04.015 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Macpherson PC, Farshi P, Goldman D (2015) Dach2-Hdac9 signaling regulates reinnervation of muscle endplates. Development 142:4038–4048.  https://doi.org/10.1242/dev.125674 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Mahmoud GS, Grover LM (2006) Growth hormone enhances excitatory synaptic transmission in area CA1 of rat hippocampus. J Neurophysiol 95:2962–2974.  https://doi.org/10.1152/jn.00947.2005 CrossRefPubMedGoogle Scholar
  101. Maphis N, Jiang S, Xu G et al (2016) Selective suppression of the α isoform of p38 MAPK rescues late-stage tau pathology. Alzheimers Res Ther 8:1–15.  https://doi.org/10.1186/s13195-016-0221-y CrossRefGoogle Scholar
  102. Marambaud P, Shioi J, Serban G et al (2002) A presenilin-1/??-secretase cleavage releases the E-cadherin intracellular domain and regulates disassembly of adherens junctions. EMBO J 21:1948–1956.  https://doi.org/10.1093/emboj/21.8.1948 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Marchand A, Atassi F, Gaaya A et al (2011) The Wnt/beta-catenin pathway is activated during advanced arterial ageing in humans. Ageing Cell 10:220–232.  https://doi.org/10.1111/j.1474-9726.2010.00661.x CrossRefGoogle Scholar
  104. Marie P (1997) Growth factors and bone formation in osteoporosis: roles for IGF-I and TGF-beta. Rev Rhum Engl Ed 64:44–53PubMedGoogle Scholar
  105. Markowitz S, Wang J, Myeroff L et al (1995) Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science (80- ) 268:1336–1338.  https://doi.org/10.1126/science.7761852 CrossRefGoogle Scholar
  106. Massagué J (1998) TGF-beta signal transduction. Annu Rev Biochem 67:753–791.  https://doi.org/10.1146/annurev.biochem.67.1.753 CrossRefPubMedGoogle Scholar
  107. Massagué J, Chen YG (2000) Controlling TGF-beta signaling. Genes Dev 14:627–644.  https://doi.org/10.1101/gad.14.6.627 CrossRefGoogle Scholar
  108. Masui T, Wakefield LM, Lechner JF et al (1986) Type beta transforming growth factor is the primary differentiation-inducing serum factor for normal human bronchial epithelial cells. Proc Natl Acad Sci U S A 83:2438–2442.  https://doi.org/10.1073/pnas.83.8.2438 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Meyer SC, Levine RL (2014) Molecular pathways: molecular basis for sensitivity and resistance to JAK kinase inhibitors. Clin Cancer Res 20:2051–2059.  https://doi.org/10.1158/1078-0432.ccr-13-0279 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Milasincic DJ, Calera MR, Farmer SR, Pilch PF (1996) Stimulation of C2C12 myoblast growth by basic fibroblast growth factor and insulin-like growth factor 1 can occur via mitogen-activated protein kinase-dependent and -independent pathways. Mol Cell Biol 16:5964–5973.  https://doi.org/10.1128/MCB.16.11.5964 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Miller FD, Gauthier AS (2007) Timing is everything: making neurons versus Glia in the developing cortex. Neuron 54:357–369.  https://doi.org/10.1016/j.neuron.2007.04.019 CrossRefPubMedGoogle Scholar
  112. Miranda CJ, Braun L, Jiang Y et al (2012) Ageing brain microenvironment decreases hippocampal neurogenesis through Wnt-mediated survivin signaling. Ageing Cell 11:542–552.  https://doi.org/10.1111/j.1474-9726.2012.00816.x CrossRefGoogle Scholar
  113. Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B (2004) Ageing activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-??2 transcription factor and TGF-??/BMP signaling pathways. Ageing Cell 3:379–389.  https://doi.org/10.1111/j.1474-9728.2004.00127.x CrossRefGoogle Scholar
  114. Mohri T, Iwakura T, Nakayama H, Fujio Y (2012) JAK-STAT signaling in cardiomyogenesis of cardiac stem cells. JAK-STAT 1:125–130.  https://doi.org/10.4161/jkst.20296 CrossRefPubMedPubMedCentralGoogle Scholar
  115. Morin PJ, Medina M, Semenov M et al (2004) Wnt-1 expression in PC12 cells induces exon 15 deletion and expression of L-APP. Neurobiol Dis 16:59–67.  https://doi.org/10.1016/j.nbd.2004.01.004 CrossRefPubMedGoogle Scholar
  116. Mutyaba PL, Belkin NS, Lopas L et al (2014) Notch signaling in mesenchymal stem cells harvested from geriatric mice. J Orthop Trauma 28(Suppl 1):S20–S23.  https://doi.org/10.1097/BOT.0000000000000064 CrossRefPubMedGoogle Scholar
  117. Nicolas V, Prewett A, Bettica P et al (1994) Age-related decreases in insulin-like growth factor-I and transforming growth factor-beta in femoral cortical bone from both men and women: implications for bone loss with ageing. J Clin Endocrinol Metab 78:1011–1016.  https://doi.org/10.1210/jc.78.5.1011 CrossRefPubMedGoogle Scholar
  118. Nicolas CS, Amici M, Bortolotto ZA et al (2013) The role of JAK-STAT signaling within the CNS. JAK-STAT 2:e22925.  https://doi.org/10.4161/jkst.22925 CrossRefPubMedPubMedCentralGoogle Scholar
  119. Noda M, Camilliere JJ (1989) In vivo stimulation of bone formation by transforming growth factor-beta. Endocrinology 124:2991–2994.  https://doi.org/10.1210/endo-124-6-2991 CrossRefPubMedGoogle Scholar
  120. O’Kane S, Ferguson MWJ (1997) Transforming growth factor βs and wound healing. Int J Biochem Cell Biol 29:63–78.  https://doi.org/10.1016/S1357-2725(96)00120-3 CrossRefPubMedGoogle Scholar
  121. O’Shea JJ, Gadina M, Schreiber RD (2002) Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 109:S121–S131.  https://doi.org/10.1016/S0092-8674(02)00701-8 CrossRefPubMedGoogle Scholar
  122. Pekary AE, Berg L, Wang J et al (1995) TNF-alpha, TSH, and ageing regulate TGF-beta synthesis and secretion in FRTL-5 rat thyroid cells. Am J Physiol 268:R808–R815Google Scholar
  123. Perdiguero E, Ruiz-Bonilla V, Serrano AL, Munoz-Canoves P (2007) Genetic deficiency of p38alpha reveals its critical role in myoblast cell cycle exit: the p38alpha-JNK connection. Cell Cycle 6:1298–1303. 4315 [pii]CrossRefGoogle Scholar
  124. Price FD, Von Maltzahn J, Bentzinger CF et al (2014) Inhibition of JAK-STAT signaling stimulates adult satellite cell function. Nat Med 20:1174–1181.  https://doi.org/10.1038/nm.3655 CrossRefPubMedPubMedCentralGoogle Scholar
  125. Qin H, Buckley JA, Li X et al (2016) Inhibition of the JAK/STAT pathway protects against α-synuclein-induced neuroinflammation and dopaminergic neurodegeneration. J Neurosci 36:5144–5159.  https://doi.org/10.1523/JNEUROSCI.4658-15.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  126. Rao P, Kadesch T (2003) The intracellular form of notch blocks transforming growth factor beta-mediated growth arrest in Mv1Lu epithelial cells. Mol Cell Biol 23:6694–6701.  https://doi.org/10.1128/MCB.23.18.6694-6701.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  127. Rawlings JS, Rosler KM, Harrison DA (2004) The JAK/STAT signaling pathway. J Cell Sci 117:1281 LP–1281283CrossRefGoogle Scholar
  128. Rebo J, Mehdipour M, Gathwala R et al (2016) A single heterochronic blood exchange reveals rapid inhibition of multiple tissues by old blood. Nat Commun 7:13363.  https://doi.org/10.1038/ncomms13363 CrossRefPubMedPubMedCentralGoogle Scholar
  129. Ren C, Yao Y, Han R et al (2018) Cerebral ischemia induces angiogenesis in the peri-infarct regions via Notch1 signaling activation. Exp Neurol 304:30–40.  https://doi.org/10.1016/j.expneurol.2018.02.013 CrossRefPubMedGoogle Scholar
  130. Reya T, Duncan AW, Ailles L et al (2003) A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423:409–414.  https://doi.org/10.1038/nature01593 CrossRefPubMedPubMedCentralGoogle Scholar
  131. Rodig SJ, Meraz MA, White JM et al (1998) Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the jaks in cytokine-induced biologic responses. Cell 93:373–383.  https://doi.org/10.1016/S0092-8674(00)81166-6 CrossRefPubMedGoogle Scholar
  132. Ross SE (2000) Inhibition of adipogenesis by Wnt signaling. Science (80- ) 289:950–953.  https://doi.org/10.1126/science.289.5481.950 CrossRefGoogle Scholar
  133. Schaeffer HJ, Weber MJ (1999) Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 19:2435–2444.  https://doi.org/10.1128/MCB.19.4.2435 CrossRefPubMedPubMedCentralGoogle Scholar
  134. Scheller M, Huelsken J, Rosenbauer F et al (2006) Hematopoietic stem cell and multilineage defects generated by constitutive β-catenin activation. Nat Immunol 7:1037–1047.  https://doi.org/10.1038/ni1387 CrossRefPubMedGoogle Scholar
  135. Segalés J, Perdiguero E, Muñoz-Cánoves P (2016) Regulation of muscle stem cell functions: a focus on the p38 MAPK signaling pathway. Front Cell Dev Biol 4:1–15.  https://doi.org/10.3389/fcell.2016.00091 CrossRefGoogle Scholar
  136. Sheen YY, Kim M-J, Park S-A et al (2013) Targeting the transforming growth factor-β signaling in cancer therapy. Biomol Ther (Seoul) 21:323–331.  https://doi.org/10.4062/biomolther.2013.072 CrossRefGoogle Scholar
  137. Shi Y, Massagué J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685–700.  https://doi.org/10.1016/S0092-8674(03)00432-X CrossRefPubMedPubMedCentralGoogle Scholar
  138. Sinha M, Jang YC, Oh J et al (2014) Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science (80- ) 344:649–652.  https://doi.org/10.1126/science.1251152 CrossRefGoogle Scholar
  139. Smith GA, Uchida K, Weiss A, Taunton J (2016) Essential biphasic role for JAK3 catalytic activity in IL-2 receptor signaling. Nat Chem Biol 12:373CrossRefGoogle Scholar
  140. Soriano S, Kang DE, Fu M et al (2001) Presenilin 1 negatively regulates β-catenin/T cell factor/lymphoid enhancer factor-1 signaling independently of β-amyloid precursor protein and notch processing. J Cell Biol 152:785–794.  https://doi.org/10.1083/jcb.152.4.785 CrossRefPubMedPubMedCentralGoogle Scholar
  141. Spangenburg EE, Booth FW (2002) Multiple signaling pathways mediate LIF-induced skeletal muscle satellite cell proliferation. Am J Physiol Physiol 283:C204–C211.  https://doi.org/10.1152/ajpcell.00574.2001 CrossRefGoogle Scholar
  142. Stine RR, Matunis EL (2013) JAK-STAT signaling in stem cells. In: Hime G, Abud H (eds) Transcriptional and translational regulation of stem cells. Springer, Dordrecht, pp 247–267CrossRefGoogle Scholar
  143. Sun L, Ma K, Wang H et al (2007) JAK1–STAT1–STAT3, a key pathway promoting proliferation and preventing premature differentiation of myoblasts. J Cell Biol 179:129 LP–129138CrossRefGoogle Scholar
  144. Sylvian B (2009) Cytokine control of adult neural stem cells. Ann N Y Acad Sci 1153:48–56.  https://doi.org/10.1111/j.1749-6632.2009.03986.x CrossRefGoogle Scholar
  145. Tamiya T, Kashiwagi I, Takahashi R et al (2011) Suppressors of cytokine signaling (SOCS) proteins and JAK/STAT pathways. Arterioscler Thromb Vasc Biol 31:980 LP–980985CrossRefGoogle Scholar
  146. Tanveer R, Gowran A, Noonan J et al (2012) The endocannabinoid, anandamide, augments notch-1 signaling in cultured cortical neurons exposed to amyloid- β and in the cortex of aged rats. J Biol Chem 287:34709–34721.  https://doi.org/10.1074/jbc.M112.350678 CrossRefPubMedPubMedCentralGoogle Scholar
  147. Thouverey C, Caverzasio J (2015) Focus on the p38 MAPK signaling pathway in bone development and maintenance. Bonekey Rep 4:1–8.  https://doi.org/10.1038/bonekey.2015.80 CrossRefGoogle Scholar
  148. Tierney MT, Aydogdu T, Sala D et al (2014) STAT3 signaling controls satellite cell expansion and skeletal muscle repair. Nat Med 20:1182CrossRefGoogle Scholar
  149. Troy A, Cadwallader AB, Fedorov Y et al (2012) Coordination of satellite cell activation and self-renewal by par-complex-dependent asymmetric activation of p38α/β MAPK. Cell Stem Cell 11:541–553.  https://doi.org/10.1016/j.stem.2012.05.025 CrossRefPubMedPubMedCentralGoogle Scholar
  150. Wang K, Wang C, Xiao F et al (2008) JAK2/STAT2/STAT3 are required for myogenic differentiation. J Biol Chem 283:34029–34036.  https://doi.org/10.1074/jbc.M803012200 CrossRefPubMedPubMedCentralGoogle Scholar
  151. Weyman CM, Ramocki MB, Taparowsky EJ, Wolfman A (1997) Distinct signaling pathways regulate transformation and inhibition of skeletal muscle differentiation by oncogenic Ras. Oncogene 14:697–704.  https://doi.org/10.1038/sj.onc.1200874 CrossRefPubMedGoogle Scholar
  152. Wiedau-Pazos M, Wong E, Solomon E et al (2009) Wnt-pathway activation during the early stage of neurodegeneration in FTDP-17 mice. Neurobiol Ageing 30:14–21.  https://doi.org/10.1016/j.neurobiolageing.2007.05.015 CrossRefGoogle Scholar
  153. Willert K, Brown JD, Danenberg E et al (2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423:448–452.  https://doi.org/10.1038/nature01611 CrossRefPubMedPubMedCentralGoogle Scholar
  154. Williamson D, Gallagher P, Harber M et al (2003) Mitogen-activated protein kinase (MAPK) pathway activation: effects of age and acute exercise on human skeletal muscle. J Physiol 547:977–987.  https://doi.org/10.1113/jphysiol.2002.036673 CrossRefPubMedPubMedCentralGoogle Scholar
  155. Wodarz A, Nusse R (1998) Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 14:59–88.  https://doi.org/10.1146/annurev.cellbio.14.1.59 CrossRefPubMedGoogle Scholar
  156. Wright M, Aikawa M, Szeto W, Papkoff J (1999) Identification of a Wnt-responsive signal transduction pathway in primary endothelial cells. Biochem Biophys Res Commun 263:384–388.  https://doi.org/10.1006/bbrc.1999.1344 CrossRefPubMedGoogle Scholar
  157. Wyss-Coray T, Lin C, Yan F et al (2001) TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat Med 7:612–618.  https://doi.org/10.1038/87945 CrossRefPubMedGoogle Scholar
  158. Xiao F, Wang H, Fu X et al (2010) Oncostatin M inhibits myoblast differentiation and regulates muscle regeneration. Cell Res 21:350CrossRefGoogle Scholar
  159. Xiao Y, Wang J, Yan W et al (2017) P38α MAPK antagonizing JNK to control the hepatic fat accumulation in pediatric patients onset intestinal failure. Cell Death Dis 8.  https://doi.org/10.1038/cddis.2017.523
  160. Xu M, Tchkonia T, Kirkland JL (2016) Perspective: targeting the JAK/STAT pathway to fight age-related dysfunction. Pharmacol Res 111:152–154.  https://doi.org/10.1016/j.phrs.2016.05.015 CrossRefPubMedPubMedCentralGoogle Scholar
  161. Yamamoto S, Nagao M, Sugimori M et al (2001) Transcription factor expression and Notch-dependent regulation of neural progenitors in the adult rat spinal cord. J Neurosci 21:9814–9823.  https://doi.org/10.1523/JNEUROSCI.21-24-09814.2001 CrossRefPubMedGoogle Scholar
  162. Yao E, Lin C, Wu Q et al (2017) Notch signaling controls transdifferentiation of pulmonary neuroendocrine cells in response to lung injury. Stem Cells 36:377–391.  https://doi.org/10.1002/stem.2744 CrossRefPubMedGoogle Scholar
  163. Ye X, Zerlanko B, Kennedy A et al (2007) Downregulation of Wnt signaling is a trigger for formation of facultative heterochromatin and onset of cell senescence in primary human cells. Mol Cell 27:183–196.  https://doi.org/10.1016/j.molcel.2007.05.034 CrossRefPubMedPubMedCentralGoogle Scholar
  164. Yokoe T, Ohmachi T, Inoue H et al (2007) Clinical significance of growth differentiation factor 11 in colorectal cancer. Int J Oncol 31:1097–1101PubMedGoogle Scholar
  165. Yousef H, Conboy MJ, Li J et al (2013) hESC-secreted proteins can be enriched for multiple regenerative therapies by heparin-binding. Ageing (Albany NY) 5:357–372PubMedCentralGoogle Scholar
  166. Yousef H, Conboy MJ, Morgenthaler A et al (2015) Systemic attenuation of the TGF-β pathway by a single drug simultaneously rejuvenates hippocampal neurogenesis and myogenesis in the same old mammal. Oncotarget 6:11959–11978.  https://doi.org/10.18632/oncotarget.3851 CrossRefPubMedPubMedCentralGoogle Scholar
  167. Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9:798–809.  https://doi.org/10.1038/nrc2734 CrossRefPubMedPubMedCentralGoogle Scholar
  168. Zhang Y, Li Q, Liu D et al (2016) GDF11 improves tubular regeneration after acute kidney injury in elderly mice. Sci Rep 6.  https://doi.org/10.1038/srep34624
  169. Zhen X, Uryu K, Cai G et al (1999) Age-associated impairment in brain MAPK signal pathways and the effect of caloric restriction in Fischer 344 rats. J Gerontol A Biol Sci Med Sci 54:B539–B548CrossRefGoogle Scholar
  170. Zhou C-J (2004) Wnt signaling mutants have decreased dentate granule cell production and radial glial scaffolding abnormalities. J Neurosci 24:121–126.  https://doi.org/10.1523/JNEUROSCI.4071-03.2004 CrossRefPubMedGoogle Scholar
  171. Zmijewski JW, Jope RS (2004) Nuclear accumulation of glycogen synthase kinase-3 during replicative senescence of human fibroblasts. Ageing Cell 3:309–317.  https://doi.org/10.1111/j.1474-9728.2004.00117.x CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Melod Mehdipour
    • 1
  • Yutong Liu
    • 1
  • Chao Liu
    • 1
  • Binod Kumar
    • 1
  • Daehwan Kim
    • 1
  • Ranveer Gathwala
    • 1
  • Irina M. Conboy
    • 1
    Email author
  1. 1.BioengineeringUnivercity of California BerkeleyBerkeleyUSA

Personalised recommendations