Glycobiology of Aging

  • Fabio Dall’OlioEmail author
Part of the Subcellular Biochemistry book series (SCBI, volume 90)


Glycosylation is one of the most frequent post-translational modification of proteins. Many membrane and secreted proteins are decorated by sugar chains mainly linked to asparagine (N-linked) or to serine or threonine (O-linked). The biosynthesis of the sugar chains is mainly controlled by the activity of their biosynthetic enzymes: the glycosyltransferases. Glycosylation plays multiple roles, including the fine regulation of the biological activity of glycoproteins. Inflammaging is a chronic low grade inflammatory status associated with aging, probably caused by the continuous exposure of the immune system to inflammatory stimuli of endogenous and exogenous origin. The aging-associated glycosylation changes often resemble those observed in inflammatory conditions. One of the most reproducible markers of calendar and biological aging is the presence of N-glycans lacking terminal galactose residues linked to Asn297 of IgG heavy chains (IgG-G0). Although the mechanism(s) generating IgG-G0 remain unclear, their presence in a variety of inflammatory conditions suggests a link with inflammaging. In addition, these aberrantly glycosylated IgG can exert a pro-inflammatory effect through different mechanisms, triggering a self-fueling inflammatory loop. A strong association with aging has been documented also for the plasmatic forms of glycosyltrasferases B4GALT1 and ST6GAL1, although their role in the extracellular glycosylation of antibodies does not appear likely. Siglecs, are a group of sialic acid binding mammalian lectins which mainly act as inhibitory receptors on the surface of immune cells. In general activity of Siglecs appears to be associated with long life, probably because of their ability to restrain aging-associated inflammation.


Glycosylation in aging Inflammaging Hypogalactosylated antibodies Siglecs Plasmatic glycosyltransferases 



danger-associated molecular patterns


dendritic cell-specific ICAM-grabbing non-integrin












immunoreceptor tyrosine-based inhibition motif




mannose binding lectin


pathogen-associated molecular patterns


rheumatoid arthritis


reactive oxygen species


senescence-associated secretory phenotype


Src-homology 2 domain (SH2)-containing phosphatese


toll-like receptor


  1. Adler Y, Lamour A, Jamin C et al (1995) Impaired binding capacity of asialyl and agalactosyl IgG to Fcγ receptors. Clin Exp Rheumatol 13:315–319PubMedGoogle Scholar
  2. Alavi A, Axford J (1995) β1,4-galactosyltransferase variations in rheumatoid arthritis. Adv Exp Med Biol 376:185–192CrossRefPubMedGoogle Scholar
  3. Alavi A, Axford JS, Hay FC et al (1998) Tissue-specific galactosyltransferase abnormalities in an experimental model of rheumatoid arthritis. Ann Med Interne (Paris) 149:251–260Google Scholar
  4. Alavi A, Arden N, Spector TD et al (2000) Immunoglobulin G glycosylation and clinical outcome in rheumatoid arthritis during pregnancy. J Rheumatol 27:1379–1385PubMedGoogle Scholar
  5. Albert H, Collin M, Dudziak D et al (2008) In vivo enzymatic modulation of IgG glycosylation inhibits autoimmune disease in an IgG subclass-dependent manner. Proc Natl Acad Sci U S A 105:15005–15009CrossRefPubMedPubMedCentralGoogle Scholar
  6. Anthony RM, Nimmerjahn F, Ashline DJ et al (2008a) Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science 320:373–376CrossRefPubMedPubMedCentralGoogle Scholar
  7. Anthony RM, Wermeling F, Karlsson MC et al (2008b) Identification of a receptor required for the anti-inflammatory activity of IVIG. Proc Natl Acad Sci U S A 105:19571–19578CrossRefPubMedPubMedCentralGoogle Scholar
  8. Appenheimer MM, Huang RY, Chandrasekaran EV et al (2003) Biologic contribution of P1 promoter-mediated expression of ST6Gal I sialyltransferase. Glycobiology 13:591–600CrossRefPubMedGoogle Scholar
  9. Arnold JN, Dwek RA, Rudd PM et al (2006) Mannan binding lectin and its interaction with immunoglobulins in health and in disease. Immunol Lett 106:103–110CrossRefPubMedGoogle Scholar
  10. Arnold JN, Wormald MR, Sim RB et al (2007) The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol 25:21–50CrossRefPubMedGoogle Scholar
  11. Axford JS, Mackenzie L, Lydyard PM et al (1987) Reduced B-cell galactosyltransferase activity in rheumatoid arthritis. Lancet 2:1486–1488CrossRefPubMedGoogle Scholar
  12. Axford JS, Sumar N, Alavi A et al (1992) Changes in normal glycosylation mechanisms in autoimmune rheumatic disease. J Clin Invest 89:1021–1031CrossRefPubMedPubMedCentralGoogle Scholar
  13. Axford JS, Alavi A, Bond A et al (1994) Differential B lymphocyte galactosyltransferase activity in the MRL mouse model of rheumatoid arthritis. Autoimmunity 17:157–163CrossRefPubMedGoogle Scholar
  14. Axford JS, Cunnane G, Fitzgerald O et al (2003) Rheumatic disease differentiation using immunoglobulin G sugar printing by high density electrophoresis. J Rheumatol 30:2540–2546PubMedGoogle Scholar
  15. Baerenwaldt A, Biburger M, Nimmerjahn F (2010) Mechanisms of action of intravenous immunoglobulins. Expert Rev Clin Immunol 6:425–434CrossRefPubMedGoogle Scholar
  16. Barb AW, Prestegard JH (2011) NMR analysis demonstrates immunoglobulin G N-glycans are accessible and dynamic. Nat Chem Biol 7:147–153CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bennett EP, Mandel U, Clausen H et al (2012) Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology 22:736–756CrossRefPubMedGoogle Scholar
  18. Bodman KB, Sumar N, Mackenzie LE et al (1992) Lymphocytes from patients with rheumatoid arthritis produce agalactosylated IgG in vitro. Clin Exp Immunol 88:420–423CrossRefPubMedPubMedCentralGoogle Scholar
  19. Bodman KB, Hutchings PR, Jeddi PA et al (1994) IgG glycosylation in autoimmune-prone strains of mice. Clin Exp Immunol 95:103–107CrossRefPubMedPubMedCentralGoogle Scholar
  20. Bordon Y (2015) Inflammation: live long and prosper with Siglecs. Nat Rev Immunol 15:266–267CrossRefPubMedGoogle Scholar
  21. Borelli V, Vanhooren V, Lonardi E et al (2015) Plasma N-Glycome signature of down syndrome. J Proteome Res 14:4232–4245CrossRefPubMedGoogle Scholar
  22. Boscher C, Dennis JW, Nabi IR (2011) Glycosylation, galectins and cellular signaling. Curr Opin Cell Biol 23:383–392CrossRefPubMedGoogle Scholar
  23. Callewaert N, Geysens S, Molemans F et al (2001) Ultrasensitive profiling and sequencing of N-linked oligosaccharides using standard DNA-sequencing equipment. Glycobiology 11:275–281CrossRefPubMedGoogle Scholar
  24. Capri M, Olivieri F, Lanzarini C et al (2017) Identification of miR-31-5p, miR-141-3p, miR-200c-3p, and GLT1 as human liver aging markers sensitive to donor-recipient age-mismatch in transplants. Aging Cell 16:262–272CrossRefPubMedGoogle Scholar
  25. Catera M, Borelli V, Malagolini N et al (2016) Identification of novel plasma glycosylation-associated markers of aging. Oncotarget 7(7):7455–7468CrossRefPubMedPubMedCentralGoogle Scholar
  26. Chen GY, Chen X, King S et al (2011) Amelioration of sepsis by inhibiting sialidase-mediated disruption of the CD24-SiglecG interaction. Nat Biotechnol 29:428–435CrossRefPubMedPubMedCentralGoogle Scholar
  27. Chen GY, Brown NK, Zheng P et al (2014) Siglec-G/10 in self-nonself discrimination of innate and adaptive immunity. Glycobiology 24:800–806CrossRefPubMedPubMedCentralGoogle Scholar
  28. Croce A, Firuzi O, Altieri F et al (2007) Effect of infliximab on the glycosylation of IgG of patients with rheumatoid arthritis. J Clin Lab Anal 21:303–314CrossRefPubMedGoogle Scholar
  29. Dall’Olio F, Malagolini N, Trinchera M et al (2012) Mechanisms of cancer-associated glycosylation changes. Front Biosci 17:670–699CrossRefGoogle Scholar
  30. Dall’Olio F, Vanhooren V, Chen CC et al (2013) N-glycomic biomarkers of biological aging and longevity: a link with inflammaging. Ageing Res Rev 12:685–698CrossRefGoogle Scholar
  31. Dalziel M, Lemaire S, Ewing J et al (1999) Hepatic acute phase induction of murine β-galactoside α 2,6 sialyltransferase (ST6Gal I) is IL-6 dependent and mediated by elevation of exon H-containing class of transcripts. Glycobiology 9:1003–1008CrossRefGoogle Scholar
  32. Das H, Atsumi T, Fukushima Y et al (2004) Diagnostic value of antiagalactosyl IgG antibodies in rheumatoid arthritis. Clin Rheumatol 23:218–222CrossRefGoogle Scholar
  33. Davies J, Jiang L, Pan LZ et al (2001) Expression of GnTIII in a recombinant anti-CD20 CHO production cell line: expression of antibodies with altered glycoforms leads to an increase in ADCC through higher affinity for FC gamma RIII. Biotechnol Bioeng 74:288–294CrossRefGoogle Scholar
  34. Delves PJ, Lund T, Axford JS et al (1990) Polymorphism and expression of the galactosyltransferase-associated protein kinase gene in normal individuals and galactosylation-defective rheumatoid arthritis patients. Arthritis Rheum 33:1655–1664CrossRefGoogle Scholar
  35. Dong X, Storkus WJ, Salter RD (1999) Binding and uptake of agalactosyl IgG by mannose receptor on macrophages and dendritic cells. J Immunol 163:5427–5434PubMedGoogle Scholar
  36. Endo T, Iwakura Y, Kobata A (1993) Structural changes in the N-linked sugar chains of serum immunoglobulin G of HTLV-I transgenic mice. Biochem Biophys Res Commun 192:1004–1010CrossRefGoogle Scholar
  37. Ezekowitz RA (1995) Agalactosyl IgG and mannose-binding proteins: biochemical nicety or pathophysiological paradigm? Nat Med 1:207–208CrossRefGoogle Scholar
  38. Field MC, Amatayakul-Chantler S, Rademacher TW et al (1994) Structural analysis of the N-glycans from human immunoglobulin A1: comparison of normal human serum immunoglobulin A1 with that isolated from patients with rheumatoid arthritis. Biochem J 299(Pt 1):261–275CrossRefPubMedPubMedCentralGoogle Scholar
  39. Franceschi C (2007) Inflammaging as a major characteristic of old people: can it be prevented or cured? Nutr Rev 65:S173–S176CrossRefPubMedPubMedCentralGoogle Scholar
  40. Franceschi C, Capri M, Monti D et al (2007) Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 128:92–105CrossRefGoogle Scholar
  41. Furukawa K, Matsuta K, Takeuchi F et al (1990) Kinetic study of a galactosyltransferase in the B cells of patients with rheumatoid arthritis. Int Immunol 2:105–112CrossRefGoogle Scholar
  42. Gornik O, Wagner J, Pucic M et al (2009) Stability of N-glycan profiles in human plasma. Glycobiology 19:1547–1553CrossRefGoogle Scholar
  43. Groenink J, Spijker J, van den Herik-Oudijk IE et al (1996) On the interaction between agalactosyl IgG and Fc gamma receptors. Eur J Immunol 26:1404–1407CrossRefGoogle Scholar
  44. Hanisch F, Weidemann W, Grossmann M et al (2013) Sialylation and muscle performance: sialic acid is a marker of muscle ageing. PLoS One 8:e80520CrossRefPubMedPubMedCentralGoogle Scholar
  45. Hart GW, Copeland RJ (2010) Glycomics hits the big time. Cell 143:672–676CrossRefPubMedPubMedCentralGoogle Scholar
  46. Hess C, Winkler A, Lorenz AK et al (2013) T cell-independent B cell activation induces immunosuppressive sialylated IgG antibodies. J Clin Invest 123:3788–3796CrossRefPubMedPubMedCentralGoogle Scholar
  47. Holland M, Yagi H, Takahashi N et al (2006) Differential glycosylation of polyclonal IgG, IgG-Fc and IgG-Fab isolated from the sera of patients with ANCA-associated systemic vasculitis. Biochim Biophys Acta 1760:669–677CrossRefGoogle Scholar
  48. Ihara Y, Nishikawa A, Tohma T et al (1993) cDNA cloning, expression, and chromosomal localization of human N-acetylglucosaminyltransferase III (GnT-III). J Biochem (Tokyo) 113:692–698CrossRefGoogle Scholar
  49. Iida S, Misaka H, Inoue M et al (2006) Nonfucosylated therapeutic IgG1 antibody can evade the inhibitory effect of serum immunoglobulin G on antibody-dependent cellular cytotoxicity through its high binding to FcγRIIIa. Clin Cancer Res 12:2879–2887CrossRefGoogle Scholar
  50. Iida S, Kuni-Kamochi R, Mori K et al (2009) Two mechanisms of the enhanced antibody-dependent cellular cytotoxicity (ADCC) efficacy of non-fucosylated therapeutic antibodies in human blood. BMC Cancer 9:58CrossRefPubMedPubMedCentralGoogle Scholar
  51. Imafuku Y, Yoshida H, Yamada Y (2003) Reactivity of agalactosyl IgG with rheumatoid factor. Clin Chim Acta 334:217–223CrossRefPubMedPubMedCentralGoogle Scholar
  52. Isenberg D (1995) Abnormalities in the glycosylation of IgG and its clinical utility. Adv Exp Med Biol 376:179–183CrossRefPubMedPubMedCentralGoogle Scholar
  53. Itakura Y, Sasaki N, Kami D et al (2016) N- and O-glycan cell surface protein modifications associated with cellular senescence and human aging. Cell Biosci 6:14CrossRefPubMedPubMedCentralGoogle Scholar
  54. Jeddi PA, Lund T, Bodman KB et al (1994) Reduced galactosyltransferase mRNA levels are associated with the agalactosyl IgG found in arthritis-prone MRL-lpr/lpr strain mice. Immunology 83:484–488PubMedPubMedCentralGoogle Scholar
  55. Jeddi PA, Bodman-Smith KB, Lund T et al (1996) Agalactosyl IgG and β-1,4-galactosyltransferase gene expression in rheumatoid arthritis patients and in the arthritis-prone MRL lpr/lpr mouse. Immunology 87:654–659CrossRefPubMedPubMedCentralGoogle Scholar
  56. Jefferis R, Lund J, Mizutani H et al (1990) A comparative study of the N-linked oligosaccharide structures of human IgG subclass proteins. Biochem J 268:529–537CrossRefPubMedPubMedCentralGoogle Scholar
  57. Jones MB, Nasirikenari M, Feng L et al (2010) Role for hepatic and circulatory ST6Gal-1 sialyltransferase in regulating myelopoiesis. J Biol Chem 285:25009–25017CrossRefPubMedPubMedCentralGoogle Scholar
  58. Jones MB, Nasirikenari M, Lugade AA et al (2012) Anti-inflammatory IgG production requires functional P1 promoter in beta-Galactoside α2,6-Sialyltransferase 1 (ST6Gal-1) gene. J Biol Chem 287:15365–15370CrossRefPubMedPubMedCentralGoogle Scholar
  59. Jones MB, Oswald DM, Joshi S et al (2016) B-cell-independent sialylation of IgG. Proc Natl Acad Sci U S A 113:7207–7212CrossRefPubMedPubMedCentralGoogle Scholar
  60. Kaneko Y, Nimmerjahn F, Ravetch JV (2006) Anti-inflammatory activity of immunoglobulin G resulting from fc sialylation. Science 313:670–673CrossRefGoogle Scholar
  61. Kaplan HA, Woloski BM, Hellman M et al (1983) Studies on the effect of inflammation on rat liver and serum sialyltransferase. Evidence that inflammation causes release of Galβ1,4GlcNAc α2,6sialyltransferase from liver. J Biol Chem 258:11505–11509PubMedGoogle Scholar
  62. Keusch J, Lydyard PM, Berger EG et al (1998) B lymphocyte galactosyltransferase protein levels in normal individuals and in patients with rheumatoid arthritis. Glycoconj J 15:1093–1097CrossRefPubMedPubMedCentralGoogle Scholar
  63. Kjeldsen-Kragh J, Sumar N, Bodman-Smith K et al (1996) Changes in glycosylation of IgG during fasting in patients with rheumatoid arthritis. Br J Rheumatol 35:117–119CrossRefPubMedPubMedCentralGoogle Scholar
  64. Knezevic A, Polasek O, Gornik O et al (2009) Variability, heritability and environmental determinants of human plasma N-glycome. J Proteome Res 8:694–701CrossRefPubMedPubMedCentralGoogle Scholar
  65. Knezevic A, Gornik O, Polasek O et al (2010) Effects of aging, body mass index, plasma lipid profiles, and smoking on human plasma N-glycans. Glycobiology 20:959–969CrossRefPubMedPubMedCentralGoogle Scholar
  66. Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664CrossRefPubMedPubMedCentralGoogle Scholar
  67. Krapp S, Mimura Y, Jefferis R et al (2003) Structural analysis of human IgG-Fc glycoforms reveals a correlation between glycosylation and structural integrity. J Mol Biol 325:979–989CrossRefPubMedPubMedCentralGoogle Scholar
  68. Kristic J, Vuckovic F, Menni C et al (2014) Glycans are a novel biomarker of chronological and biological ages. J Gerontol A Biol Sci Med Sci 69:779–789CrossRefPubMedPubMedCentralGoogle Scholar
  69. Kumpel BM, Wang Y, Griffiths HL et al (1995) The biological activity of human monoclonal IgG anti-D is reduced by β-galactosidase treatment. Hum Antibodies Hybridomas 6:82–88CrossRefPubMedPubMedCentralGoogle Scholar
  70. Kuroda Y, Nakata M, Hirose S et al (2001) Abnormal IgG galactosylation in MRL-lpr/lpr mice: pathogenic role in the development of arthritis. Pathol Int 51:909–915CrossRefPubMedGoogle Scholar
  71. Lauc G, Huffman J, Hayward C et al (2009) Genome-wide association study identifies FUT8 and ESR2 as co-regulators of a bi-antennary N-linked glycan A2 (GlcNAc2Man3GlcNAc2) in human plasma proteins. Nature PrecedingsGoogle Scholar
  72. Lauc G, Essafi A, Huffman JE et al (2010) Genomics meets glycomics-the first GWAS study of human N-glycome identifies HNF1α as a master regulator of plasma protein fucosylation. PLoS Genet 6:e1001256CrossRefPubMedPubMedCentralGoogle Scholar
  73. Lee MM, Nasirikenari M, Manhardt CT et al (2014) Platelets support extracellular sialylation by supplying the sugar donor substrate. J Biol Chem 289:8742–8748CrossRefPubMedPubMedCentralGoogle Scholar
  74. Li T, DiLillo DJ, Bournazos S et al (2017) Modulating IgG effector function by Fc glycan engineering. Proc Natl Acad Sci U S A 114:3485–3490CrossRefPubMedPubMedCentralGoogle Scholar
  75. Liu Y, Chen GY, Zheng P (2009) CD24-Siglec G/10 discriminates danger- from pathogen-associated molecular patterns. Trends Immunol 30:557–561CrossRefPubMedPubMedCentralGoogle Scholar
  76. Macauley MS, Crocker PR, Paulson JC (2014) Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol 14:653–666CrossRefPubMedPubMedCentralGoogle Scholar
  77. Maeno N, Takei S, Fujikawa S et al (2004) Antiagalactosyl IgG antibodies in juvenile idiopathic arthritis, juvenile onset Sjogren’s syndrome, and healthy children. J Rheumatol 31:1211–1217PubMedGoogle Scholar
  78. Malhotra R, Wormald MR, Rudd PM et al (1995) Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat Med 1:237–243CrossRefPubMedGoogle Scholar
  79. Manhardt CT, Punch PR, Dougher CWL et al (2017) Extrinsic sialylation is dynamically regulated by systemic triggers in vivo. J Biol Chem 292:13514–13520CrossRefPubMedPubMedCentralGoogle Scholar
  80. Martin K, Talukder R, Hay FC et al (2001) Characterization of changes in IgG associated oligosaccharide profiles in rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis using fluorophore linked carbohydrate electrophoresis. J Rheumatol 28:1531–1536PubMedGoogle Scholar
  81. Matsumoto A, Shikata K, Takeuchi F et al (2000) Autoantibody activity of IgG rheumatoid factor increases with decreasing levels of galactosylation and sialylation. J Biochem (Tokyo) 128:621–628CrossRefGoogle Scholar
  82. Maverakis E, Kim K, Shimoda M et al (2015) Glycans in the immune system and the altered glycan theory of autoimmunity: a critical review. J Autoimmun 57:1–13CrossRefPubMedGoogle Scholar
  83. Menni C, Keser T, Mangino M et al (2013) Glycosylation of immunoglobulin G: role of genetic and epigenetic influences. PLoS One 8:e82558CrossRefPubMedPubMedCentralGoogle Scholar
  84. Mimura Y, Ashton PR, Takahashi N et al (2007) Contrasting glycosylation profiles between Fab and Fc of a human IgG protein studied by electrospray ionization mass spectrometry. J Immunol Methods 326:116–126CrossRefPubMedGoogle Scholar
  85. Miura Y, Endo T (2016) Glycomics and glycoproteomics focused on aging and age-related diseases – glycans as a potential biomarker for physiological alterations. Biochim Biophys Acta 1860:1608–1614CrossRefPubMedGoogle Scholar
  86. Miura Y, Hashii N, Tsumoto H et al (2015) Change in N-glycosylation of plasma proteins in Japanese semisupercentenarians. PLoS One 10:e0142645CrossRefPubMedPubMedCentralGoogle Scholar
  87. Muller J, Lunz B, Schwab I et al (2015) Siglec-G deficiency leads to autoimmunity in aging C57BL/6 mice. J Immunol 195:51–60CrossRefPubMedGoogle Scholar
  88. Nakagawa H, Hato M, Takegawa Y et al (2007) Detection of altered N-glycan profiles in whole serum from rheumatoid arthritis patients. J Chromatogr B Anal Technol Biomed Life Sci 853:133–137CrossRefGoogle Scholar
  89. Narasimhan S (1982) Control of glycoprotein synthesis. UDP-GlcNAc:glycopeptide β4-N- acetylglucosaminyltransferase III, an enzyme in hen oviduct which adds GlcNAc in β1-4 linkage to the β-linked mannose of the trimannosyl core of N-glycosyl oligosaccharides. J Biol Chem 257:10235–10242PubMedGoogle Scholar
  90. Nasirikenari M, Segal BH, Ostberg JR et al (2006) Altered granulopoietic profile and exaggerated acute neutrophilic inflammation in mice with targeted deficiency in the sialyltransferase ST6Gal I. Blood 108:3397–3405CrossRefPubMedPubMedCentralGoogle Scholar
  91. Nasirikenari M, Chandrasekaran EV, Matta KL et al (2010) Altered eosinophil profile in mice with ST6Gal-1 deficiency: an additional role for ST6Gal-1 generated by the P1 promoter in regulating allergic inflammation. J Leukoc Biol 87:457–466CrossRefPubMedGoogle Scholar
  92. Nasirikenari M, Veillon L, Collins CC et al (2014) Remodeling of marrow hematopoietic stem and progenitor cells by non-self ST6Gal-1 sialyltransferase. J Biol Chem 289:7178–7189CrossRefPubMedPubMedCentralGoogle Scholar
  93. Nimmerjahn F, Ravetch JV (2006) Fcγ receptors: old friends and new family members. Immunity 24:19–28CrossRefPubMedGoogle Scholar
  94. Nimmerjahn F, Ravetch JV (2008) Fcγ receptors as regulators of immune responses. Nat Rev Immunol 8:34–47CrossRefPubMedGoogle Scholar
  95. Nimmerjahn F, Anthony RM, Ravetch JV (2007) Agalactosylated IgG antibodies depend on cellular Fc receptors for in vivo activity. Proc Natl Acad Sci U S A 104:8433–8437CrossRefPubMedPubMedCentralGoogle Scholar
  96. Nishijima C, Sato S, Takehara K (2001) Anti-agalactosyl IgG antibodies in sera from patients with systemic sclerosis. J Rheumatol 28:1847–1851PubMedGoogle Scholar
  97. Niwa R, Natsume A, Uehara A et al (2005) IgG subclass-independent improvement of antibody-dependent cellular cytotoxicity by fucose removal from Asn297-linked oligosaccharides. J Immunol Methods 306:151–160CrossRefPubMedGoogle Scholar
  98. Oefner CM, Winkler A, Hess C et al (2012) Tolerance induction with T cell-dependent protein antigens induces regulatory sialylated IgGs. J Allergy Clin Immunol 129:1647–1655CrossRefPubMedGoogle Scholar
  99. Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126:855–867CrossRefPubMedGoogle Scholar
  100. Parekh RB, Dwek RA, Sutton BJ et al (1985) Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature 316:452–457CrossRefPubMedGoogle Scholar
  101. Parekh R, Roitt I, Isenberg D et al (1988) Age-related galactosylation of the N-linked oligosaccharides of human serum IgG. J Exp Med 167:1731–1736CrossRefPubMedGoogle Scholar
  102. Parekh R, Isenberg D, Rook G et al (1989) A comparative analysis of disease-associated changes in the galactosylation of serum IgG. J Autoimmun 2:101–114CrossRefPubMedGoogle Scholar
  103. Pasek M, Duk M, Podbielska M et al (2006) Galactosylation of IgG from rheumatoid arthritis (RA) patients--changes during therapy. Glycoconj J 23:463–471CrossRefPubMedGoogle Scholar
  104. Pekelharing JM, Hepp E, Kamerling JP et al (1988) Alterations in carbohydrate composition of serum IgG from patients with rheumatoid arthritis and from pregnant women. Ann Rheum Dis 47:91–95CrossRefPubMedPubMedCentralGoogle Scholar
  105. Pilkington C, Yeung E, Isenberg D et al (1995) Agalactosyl IgG and antibody specificity in rheumatoid arthritis, tuberculosis, systemic lupus erythematosus and myasthenia gravis. Autoimmunity 22:107–111CrossRefPubMedGoogle Scholar
  106. Pillai S, Netravali IA, Cariappa A et al (2012) Siglecs and immune regulation. Annu Rev Immunol 30:357–392CrossRefPubMedPubMedCentralGoogle Scholar
  107. Pinho SS, Reis CA (2015) Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer 15:540–555CrossRefPubMedGoogle Scholar
  108. Pucic M, Pinto S, Novokmet M et al (2010) Common aberrations from the normal human plasma N-glycan profile. Glycobiology 20:970–975CrossRefPubMedGoogle Scholar
  109. Rademacher TW (1991) Network theory of glycosylation--etiologic and pathogenic implications of changes in IgG glycoform levels in autoimmunity. Semin Cell Biol 2:327–337PubMedGoogle Scholar
  110. Rademacher TW, Parekh RB, Dwek RA et al (1988) The role of IgG glycoforms in the pathogenesis of rheumatoid arthritis. Springer Semin Immunopathol 10:231–249CrossRefPubMedGoogle Scholar
  111. Rademacher TW, Williams P, Dwek RA (1994) Agalactosyl glycoforms of IgG autoantibodies are pathogenic. Proc Natl Acad Sci U S A 91:6123–6127CrossRefPubMedPubMedCentralGoogle Scholar
  112. Raju TS (2008) Terminal sugars of Fc glycans influence antibody effector functions of IgGs. Curr Opin Immunol 20:471–478CrossRefPubMedGoogle Scholar
  113. Rocha VZ, Libby P (2009) Obesity, inflammation, and atherosclerosis. Nat Rev Cardiol 6:399–409CrossRefPubMedGoogle Scholar
  114. Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192:547–556CrossRefPubMedPubMedCentralGoogle Scholar
  115. Rook G, Thompson S, Buckley M et al (1991a) The role of oil and agalactosyl IgG in the induction of arthritis in rodent models. Eur J Immunol 21:1027–1032CrossRefPubMedGoogle Scholar
  116. Rook GA, Steele J, Brealey R et al (1991b) Changes in IgG glycoform levels are associated with remission of arthritis during pregnancy. J Autoimmun 4:779–794CrossRefPubMedGoogle Scholar
  117. Royle L, Campbell MP, Radcliffe CM et al (2008) HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Anal Biochem 376:1–12CrossRefPubMedGoogle Scholar
  118. Rudd PM, Elliott T, Cresswell P et al (2001) Glycosylation and the immune system. Science 291:2370–2376CrossRefPubMedGoogle Scholar
  119. Ruhaak LR, Uh HW, Beekman M et al (2010) Decreased levels of bisecting GlcNAc glycoforms of IgG are associated with human longevity. PLoS One 5:e12566CrossRefPubMedPubMedCentralGoogle Scholar
  120. Ruhaak LR, Uh HW, Beekman M et al (2011) Plasma protein N-glycan profiles are associated with calendar age, familial longevity and health. J Proteome Res 10:1667–1674CrossRefPubMedGoogle Scholar
  121. Sanchis-Gomar F, Santos-Lozano A, Pareja-Galeano H et al (2016) Galectin-3, osteopontin and successful aging. Clin Chem Lab Med 54:873–877CrossRefPubMedGoogle Scholar
  122. Satoh M, Iida S, Shitara K (2006) Non-fucosylated therapeutic antibodies as next-generation therapeutic antibodies. Expert Opin Biol Ther 6:1161–1173CrossRefPubMedGoogle Scholar
  123. Scallon BJ, Tam SH, McCarthy SG et al (2007) Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Mol Immunol 44:1524–1534CrossRefPubMedGoogle Scholar
  124. Schwarz F, Pearce OM, Wang X et al (2015) Siglec receptors impact mammalian lifespan by modulating oxidative stress. elife 4:e06184CrossRefPubMedCentralGoogle Scholar
  125. Shibata-Koyama M, Iida S, Misaka H et al (2009) Nonfucosylated rituximab potentiates human neutrophil phagocytosis through its high binding for FcγRIIIb and MHC class II expression on the phagocytotic neutrophils. Exp Hematol 37:309–321CrossRefPubMedGoogle Scholar
  126. Shields RL, Lai J, Keck R et al (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcγ RIII and antibody-dependent cellular toxicity. J Biol Chem 277:26733–26740CrossRefPubMedGoogle Scholar
  127. Shikata K, Yasuda T, Takeuchi F et al (1998) Structural changes in the oligosaccharide moiety of human IgG with aging. Glycoconj J 15:683–689CrossRefPubMedGoogle Scholar
  128. Shinkawa T, Nakamura K, Yamane N et al (2003) The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem 278:3466–3473CrossRefPubMedGoogle Scholar
  129. Soltys AJ, Hay FC, Bond A et al (1994) The binding of synovial tissue-derived human monoclonal immunoglobulin M rheumatoid factor to immunoglobulin G preparations of differing galactose content. Scand J Immunol 40:135–143CrossRefPubMedGoogle Scholar
  130. Stanworth SJ, Donn RP, Hassall A et al (1998) Absence of an association between mannose-binding lectin polymorphism and rheumatoid arthritis. Br J Rheumatol 37:186–188CrossRefPubMedGoogle Scholar
  131. Tadokoro T, Yamamoto K, Kuwahara I et al (2006) Preferential reduction of the α-2-6-sialylation from cell surface N-glycans of human diploid fibroblastic cells by in vitro aging. Glycoconj J 23:443–452CrossRefPubMedPubMedCentralGoogle Scholar
  132. Tsuchiya N, Endo T, Kochibe N et al (1998) Use of lectin for detection of agalactosyl IgG. Methods Mol Med 9:195–205PubMedPubMedCentralGoogle Scholar
  133. Umana P, Jean-Mairet J, Moudry R et al (1999) Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol 17:176–180CrossRefPubMedPubMedCentralGoogle Scholar
  134. Van Beneden K, Coppieters K, Laroy W et al (2009) Reversible changes in serum immunoglobulin galactosylation during the immune response and treatment of inflammatory autoimmune arthritis. Ann Rheum Dis 68:1360–1365CrossRefPubMedPubMedCentralGoogle Scholar
  135. van de Geijn FE, Wuhrer M, Selman MH et al (2009) Immunoglobulin G galactosylation and sialylation are associated with pregnancy-induced improvement of rheumatoid arthritis and the postpartum flare: results from a large prospective cohort study. Arthritis Res Ther 11:R193CrossRefPubMedPubMedCentralGoogle Scholar
  136. Vanhooren V, Desmyter L, Liu XE et al (2007) N-glycomic changes in serum proteins during human aging. Rejuvenation Res 10:521–531aCrossRefPubMedPubMedCentralGoogle Scholar
  137. Vanhooren V, Laroy W, Libert C et al (2008) N-glycan profiling in the study of human aging. Biogerontology 9:351–356CrossRefPubMedPubMedCentralGoogle Scholar
  138. Vanhooren V, Liu XE, Franceschi C et al (2009) N-glycan profiles as tools in diagnosis of hepatocellular carcinoma and prediction of healthy human ageing. Mech Ageing Dev 130:92–97CrossRefPubMedPubMedCentralGoogle Scholar
  139. Vanhooren V, Dewaele S, Libert C et al (2010) Serum N-glycan profile shift during human ageing. Exp Gerontol 45:738–743CrossRefPubMedPubMedCentralGoogle Scholar
  140. Vanhooren V, Dewaele S, Kuro O et al (2011) Alteration in N-glycomics during mouse aging: a role for FUT8. Aging Cell 10:1056–1066CrossRefGoogle Scholar
  141. Varki A (2017) Biological roles of glycans. Glycobiology 27:3–49CrossRefGoogle Scholar
  142. Wandall HH, Rumjantseva V, Sorensen AL et al (2012) The origin and function of platelet glycosyltransferases. Blood 120:626–635CrossRefPubMedPubMedCentralGoogle Scholar
  143. Weindruch R, Naylor PH, Goldstein AL et al (1988) Influences of aging and dietary restriction on serum thymosin α 1 levels in mice. J Gerontol 43:B40–B42CrossRefPubMedGoogle Scholar
  144. Wormald MR, Rudd PM, Harvey DJ et al (1997) Variations in oligosaccharide-protein interactions in immunoglobulin G determine the site-specific glycosylation profiles and modulate the dynamic motion of the Fc oligosaccharides. Biochemistry 36:1370–1380CrossRefPubMedPubMedCentralGoogle Scholar
  145. Yabe R, Tateno H, Hirabayashi J (2010) Frontal affinity chromatography analysis of constructs of DC-SIGN, DC-SIGNR and LSECtin extend evidence for affinity to agalactosylated N-glycans. FEBS J 277:4010–4026CrossRefGoogle Scholar
  146. Yagev H, Frenkel A, Cohen IR et al (1993) Adjuvant arthritis is associated with changes in the glycosylation of serum IgG1 and IgG2b. Clin Exp Immunol 94:452–458CrossRefPubMedPubMedCentralGoogle Scholar
  147. Yamada E, Tsukamoto Y, Sasaki R et al (1997) Structural changes of immunoglobulin G oligosaccharides with age in healthy human serum. Glycoconj J 14:401–405CrossRefPubMedPubMedCentralGoogle Scholar
  148. Yamaguchi Y, Nishimura M, Nagano M et al (2006) Glycoform-dependent conformational alteration of the Fc region of human immunoglobulin G1 as revealed by NMR spectroscopy. Biochim Biophys Acta 1760:693–700CrossRefPubMedPubMedCentralGoogle Scholar
  149. Yanagidani S, Uozumi N, Ihara Y et al (1997) Purification and cDNA cloning of GDP-L-Fuc: N-acetyl-β-D- glucosaminide:α1-6 fucosyltransferase (α1-6 FucT) from human gastric cancer MKN45 cells. J Biochem (Tokyo) 121:626–632CrossRefGoogle Scholar
  150. Youings A, Chang SC, Dwek RA et al (1996) Site-specific glycosylation of human immunoglobulin G is altered in four rheumatoid arthritis patients. Biochem J 314(Pt 2):621–630CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaBolognaItaly

Personalised recommendations