Role/s of ‘Antioxidant’ Enzymes in Ageing

  • Elizabeth VealEmail author
  • Thomas Jackson
  • Heather Latimer
Part of the Subcellular Biochemistry book series (SCBI, volume 90)


Reactive oxygen species (ROS), generated externally and during aerobic metabolism, are a potent cause of cell damage. Oxidative damage is a feature of many diseases and ageing, including age-associated diseases, such as diabetes, cancer, cardiovascular and neurodegenerative diseases. Indeed, this association helped lead to the widely expounded ‘Free Radical Theory of Aging’, proposing that the accumulation of ROS-induced damage is the underlying cause of ageing. In the last decade, it has become apparent that ROS play more complex roles in ageing than simply causing damage. This includes the induction of signalling pathways that protect against/repair cell damage. Cells encode a variety of enzymes that metabolise ROS, some of which reduce them to less reactive species. In this chapter, we review the evidence that manipulating the levels of these enzymes has any effect/s on ageing. We will also highlight a few examples illustrating why it is an over-simplification to describe the activities of some of these enzymes as ‘antioxidants’. We discuss how these studies have helped refine our view of how ROS and ROS-metabolising enzymes contribute to the ageing process.


Peroxiredoxins Superoxide dismutase Catalase Signal transduction Hydrogen peroxide Yeast Flies Worms Mice Antioxidants 



We are grateful to many colleagues in the aging and redox fields for helpful discussions that have informed this chapter. We thank the many contributors to this field, whose work and insight has informed this review and apologise to any whose work we may have inadvertently overlooked.


  1. An JH, Blackwell TK (2003) SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes Dev 17:1882–1893CrossRefPubMedPubMedCentralGoogle Scholar
  2. Berndt C, Schwenn JD, Lillig CH (2015) The specificity of thioredoxins and glutaredoxins is determined by electrostatic and geometric complementarity. Chem Sci 6:7049–7058CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bhatla N, Horvitz HR (2015) Light and hydrogen peroxide inhibit C. elegans feeding through gustatory receptor orthologs and pharyngeal neurons. Neuron 85:804–818CrossRefPubMedPubMedCentralGoogle Scholar
  4. Biteau B, Labarre J, Toledano MB (2003) ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425:980–984CrossRefPubMedGoogle Scholar
  5. Blackwell TK, Steinbaugh MJ, Hourihan JM, Ewald CY, Isik M (2015) SKN-1/Nrf, stress responses, and aging in Caenorhabditis elegans. Free Radic Biol Med 88:290–301CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bossis G, Melchior F (2006) Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Mol Cell 21:349–357CrossRefPubMedGoogle Scholar
  7. Bozonet SM, Findlay VJ, Day AM, Cameron J, Veal EA, Morgan BA (2005) Oxidation of a eukaryotic 2-Cys peroxiredoxin is a molecular switch controlling the transcriptional response to increasing levels of hydrogen peroxide. J Biol Chem 280:23319–23327CrossRefPubMedGoogle Scholar
  8. Brandes N, Tienson H, Lindemann A, Vitvitsky V, Reichmann D, Banerjee R, Jakob U (2013) Time line of redox events in aging postmitotic cells. elife 2:e00306CrossRefPubMedPubMedCentralGoogle Scholar
  9. Brown JD, Day AM, Taylor SR, Tomalin LE, Morgan BA, Veal EA (2013) A peroxiredoxin promotes H2O2 signaling and oxidative stress resistance by oxidizing a thioredoxin family protein. Cell Rep 5:1425–1435CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cabreiro F, Ackerman D, Doonan R, Araiz C, Back P, Papp D, Braeckman BP, Gems D (2011) Increased life span from overexpression of superoxide dismutase in Caenorhabditis elegans is not caused by decreased oxidative damage. Free Radic Biol Med 51:1575–1582CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cao Z, Subramaniam S, Bulleid NJ (2014) Lack of an efficient endoplasmic reticulum-localized recycling system protects peroxiredoxin IV from hyperoxidation. J Biol Chem 289:5490–5498CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cha HN, Park S, Dan Y, Kim JR, Park SY (2018). Peroxiredoxin2 deficiency aggravates aging-induced insulin resistance and declines muscle strength. J Gerontol A Biol Sci Med SciGoogle Scholar
  13. Chen D, Toone WM, Mata J, Lyne R, Burns G, Kivinen K, Brazma A, Jones N, Bahler J (2003) Global transcriptional responses of fission yeast to environmental stress. Mol Biol Cell 14:214–229CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chikara S, Nagaprashantha LD, Singhal J, Horne D, Awasthi S, Singhal SS (2018) Oxidative stress and dietary phytochemicals: role in cancer chemoprevention and treatment. Cancer Lett 413:122–134CrossRefPubMedGoogle Scholar
  15. Dangoor I, Peled-Zehavi H, Wittenberg G, Danon A (2012) A chloroplast light-regulated oxidative sensor for moderate light intensity in Arabidopsis. Plant Cell 24:1894–1906CrossRefPubMedPubMedCentralGoogle Scholar
  16. Day AM, Brown JD, Taylor SR, Rand JD, Morgan BA, Veal EA (2012) Inactivation of a peroxiredoxin by hydrogen peroxide is critical for thioredoxin-mediated repair of oxidized proteins and cell survival. Mol Cell 45:398–408CrossRefPubMedGoogle Scholar
  17. Doonan R, McElwee JJ, Matthijssens F, Walker GA, Houthoofd K, Back P, Matscheski A, Vanfleteren JR, Gems D (2008) Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans. Genes Dev 22:3236–3241CrossRefPubMedPubMedCentralGoogle Scholar
  18. Doris KS, Rumsby EL, Morgan BA (2012) Oxidative stress responses involve oxidation of a conserved ubiquitin pathway enzyme. Mol Cell Biol 32:4472–4481CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dues DJ, Schaar CE, Johnson BK, Bowman MJ, Winn ME, Senchuk MM, Van Raamsdonk JM (2017) Uncoupling of oxidative stress resistance and lifespan in long-lived isp-1 mitochondrial mutants in Caenorhabditis elegans. Free Radic Biol Med 108:362–373CrossRefPubMedPubMedCentralGoogle Scholar
  20. Duttaroy A, Paul A, Kundu M, Belton A (2003) A Sod2 null mutation confers severely reduced adult life span in Drosophila. Genetics 165:2295–2299PubMedPubMedCentralGoogle Scholar
  21. Elchuri S, Oberley TD, Qi W, Eisenstein RS, Jackson Roberts L, Van Remmen H, Epstein CJ, Huang TT (2005) CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene 24:367–380CrossRefPubMedGoogle Scholar
  22. Fabrizio P, Liou LL, Moy VN, Diaspro A, Valentine JS, Gralla EB, Longo VD (2003) SOD2 functions downstream of Sch9 to extend longevity in yeast. Genetics 163:35–46PubMedPubMedCentralGoogle Scholar
  23. Faulkner MJ, Helmann JD (2011) Peroxide stress elicits adaptive changes in bacterial metal ion homeostasis. Antioxid Redox Signal 15:175–189CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fortmann SP, Burda BU, Senger CA, Lin JS, Whitlock EP (2013) Vitamin and mineral supplements in the primary prevention of cardiovascular disease and cancer: an updated systematic evidence review for the U.S. Preventive Services Task Force. Ann Intern Med 159:824-834CrossRefGoogle Scholar
  25. Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257CrossRefPubMedPubMedCentralGoogle Scholar
  26. Goh GYS, Winter JJ, Bhanshali F, Doering KRS, Lai R, Lee K, Veal EA, Taubert S (2018) NHR-49/HNF4 integrates regulation of fatty acid metabolism with a protective transcriptional response to oxidative stress and fasting. Aging Cell 17:e12743CrossRefPubMedPubMedCentralGoogle Scholar
  27. Grant CM, Quinn KA, Dawes IW (1999) Differential protein S-thiolation of glyceraldehyde-3-phosphate dehydrogenase isoenzymes influences sensitivity to oxidative stress. Mol Cell Biol 19:2650–2656CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gruber J, Ng LF, Fong S, Wong YT, Koh SA, Chen CB, Shui G, Cheong WF, Schaffer S, Wenk MR, Halliwell B (2011) Mitochondrial changes in ageing Caenorhabditis elegans -what do we learn from superoxide dismutase knockouts? PLoS One 6:e19444CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hansen RE, Roth D, Winther JR (2009) Quantifying the global cellular thiol-disulfide status. Proc Natl Acad Sci U S A 106:422–427CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hanzen S, Vielfort K, Yang J, Roger F, Andersson V, Zamarbide-Fores S, Andersson R, Malm L, Palais G, Biteau B et al (2016) Lifespan control by redox-dependent recruitment of chaperones to misfolded proteins. Cell 166:140–151CrossRefPubMedGoogle Scholar
  31. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300CrossRefGoogle Scholar
  32. Harris N, Costa V, MacLean M, Mollapour M, Moradas-Ferreira P, Piper PW (2003) Mnsod overexpression extends the yeast chronological (G(0)) life span but acts independently of Sir2p histone deacetylase to shorten the replicative life span of dividing cells. Free Radic Biol Med 34:1599–1606CrossRefPubMedGoogle Scholar
  33. Harris N, Bachler M, Costa V, Mollapour M, Moradas-Ferreira P, Piper PW (2005) Overexpressed Sod1p acts either to reduce or to increase the lifespans and stress resistance of yeast, depending on whether it is Cu(2+)-deficient or an active Cu,Zn-superoxide dismutase. Aging Cell 4:41–52CrossRefPubMedGoogle Scholar
  34. Honda Y, Honda S (1999) The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J 13:1385–1393CrossRefPubMedGoogle Scholar
  35. Hu D, Cao P, Thiels E, Chu CT, Wu GY, Oury TD, Klann E (2007) Hippocampal long-term potentiation, memory, and longevity in mice that overexpress mitochondrial superoxide dismutase. Neurobiol Learn Mem 87:372–384CrossRefPubMedGoogle Scholar
  36. Huang ME, Kolodner RD (2005) A biological network in Saccharomyces cerevisiae prevents the deleterious effects of endogenous oxidative DNA damage. Mol Cell 17:709–720CrossRefPubMedGoogle Scholar
  37. Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, Roveri A, Peng X, Porto Freitas F, Seibt T et al (2018) Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell 172:409–422 e421CrossRefPubMedGoogle Scholar
  38. Isermann K, Liebau E, Roeder T, Bruchhaus I (2004) A peroxiredoxin specifically expressed in two types of pharyngeal neurons is required for normal growth and egg production in Caenorhabditis elegans. J Mol Biol 338:745–755CrossRefPubMedGoogle Scholar
  39. Jang HH, Lee KO, Chi YH, Jung BG, Park SK, Park JH, Lee JR, Lee SS, Moon JC, Yun JW et al (2004) Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117:625–635CrossRefPubMedGoogle Scholar
  40. Jang YC, Perez VI, Song W, Lustgarten MS, Salmon AB, Mele J, Qi W, Liu Y, Liang H, Chaudhuri A et al (2009) Overexpression of Mn superoxide dismutase does not increase life span in mice. J Gerontol A Biol Sci Med Sci 64:1114–1125CrossRefPubMedGoogle Scholar
  41. Jang YC, Lustgarten MS, Liu Y, Muller FL, Bhattacharya A, Liang H, Salmon AB, Brooks SV, Larkin L, Hayworth CR et al (2010) Increased superoxide in vivo accelerates age-associated muscle atrophy through mitochondrial dysfunction and neuromuscular junction degeneration. FASEB J 24:1376–1390CrossRefPubMedPubMedCentralGoogle Scholar
  42. Jarvis RM, Hughes SM, Ledgerwood EC (2012) Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells. Free Radic Biol Med 53:1522–1530CrossRefPubMedGoogle Scholar
  43. Kawalek A, Lefevre SD, Veenhuis M, van der Klei IJ (2013) Peroxisomal catalase deficiency modulates yeast lifespan depending on growth conditions. Aging (Albany NY) 5:67–83CrossRefGoogle Scholar
  44. Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116CrossRefPubMedGoogle Scholar
  45. Kirby K, Hu J, Hilliker AJ, Phillips JP (2002) RNA interference-mediated silencing of Sod2 in Drosophila leads to early adult-onset mortality and elevated endogenous oxidative stress. Proc Natl Acad Sci U S A 99:16162–16167CrossRefPubMedPubMedCentralGoogle Scholar
  46. Klein EA, Thompson IM Jr, Tangen CM, Crowley JJ, Lucia MS, Goodman PJ, Minasian LM, Ford LG, Parnes HL, Gaziano JM et al (2011) Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 306:1549–1556CrossRefPubMedPubMedCentralGoogle Scholar
  47. Klichko VI, Orr WC, Radyuk SN (2016) The role of peroxiredoxin 4 in inflammatory response and aging. Biochim Biophys Acta 1862:265–273CrossRefPubMedGoogle Scholar
  48. Lee TH, Kim SU, Yu SL, Kim SH, Park DS, Moon HB, Dho SH, Kwon KS, Kwon HJ, Han YH et al (2003) Peroxiredoxin II is essential for sustaining life span of erythrocytes in mice. Blood 101:5033–5038CrossRefPubMedGoogle Scholar
  49. Lee SY, Song JY, Kwon ES, Roe JH (2008) Gpx1 is a stationary phase-specific thioredoxin peroxidase in fission yeast. Biochem Biophys Res Commun 367:67–71CrossRefPubMedGoogle Scholar
  50. Lee KS, Iijima-Ando K, Iijima K, Lee WJ, Lee JH, Yu K, Lee DS (2009) JNK/FOXO-mediated neuronal expression of fly homologue of peroxiredoxin II reduces oxidative stress and extends life span. J Biol Chem 284:29454–29461CrossRefPubMedPubMedCentralGoogle Scholar
  51. Libina N, Berman JR, Kenyon C (2003) Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell 115:489–502CrossRefPubMedGoogle Scholar
  52. Lin K, Dorman JB, Rodan A, Kenyon C (1997) daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278:1319–1322CrossRefPubMedGoogle Scholar
  53. Lin K, Hsin H, Libina N, Kenyon C (2001) Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat Genet 28:139–145CrossRefPubMedGoogle Scholar
  54. Longo VD, Gralla EB, Valentine JS (1996) Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. Mitochondrial production of toxic oxygen species in vivo. J Biol Chem 271:12275–12280CrossRefPubMedGoogle Scholar
  55. Lu J, Vallabhaneni H, Yin J, Liu Y (2013) Deletion of the major peroxiredoxin Tsa1 alters telomere length homeostasis. Aging Cell 12:635–644CrossRefPubMedPubMedCentralGoogle Scholar
  56. Martin I, Jones MA, Rhodenizer D, Zheng J, Warrick JM, Seroude L, Grotewiel M (2009) Sod2 knockdown in the musculature has whole-organism consequences in Drosophila. Free Radic Biol Med 47:803–813CrossRefPubMedPubMedCentralGoogle Scholar
  57. Martins D, Kathiresan M, English AM (2013) Cytochrome c peroxidase is a mitochondrial heme-based H2O2 sensor that modulates antioxidant defense. Free Radic Biol Med 65:541–551CrossRefPubMedGoogle Scholar
  58. Martins D, Titorenko VI, English AM (2014) Cells with impaired mitochondrial H2O2 sensing generate less *OH radicals and live longer. Antioxid Redox Signal 21:1490–1503CrossRefPubMedGoogle Scholar
  59. Meng TC, Fukada T, Tonks NK (2002) Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell 9:387–399CrossRefPubMedGoogle Scholar
  60. Mesquita A, Weinberger M, Silva A, Sampaio-Marques B, Almeida B, Leao C, Costa V, Rodrigues F, Burhans WC, Ludovico P (2010) Caloric restriction or catalase inactivation extends yeast chronological lifespan by inducing H2O2 and superoxide dismutase activity. Proc Natl Acad Sci U S A 107:15123–15128CrossRefPubMedPubMedCentralGoogle Scholar
  61. Mockett RJ, Sohal BH, Sohal RS (2010) Expression of multiple copies of mitochondrially targeted catalase or genomic Mn superoxide dismutase transgenes does not extend the life span of Drosophila melanogaster. Free Radic Biol Med 49:2028–2031CrossRefPubMedPubMedCentralGoogle Scholar
  62. Molin M, Yang J, Hanzen S, Toledano MB, Labarre J, Nystrom T (2011) Life span extension and H(2)O(2) resistance elicited by caloric restriction require the peroxiredoxin Tsa1 in Saccharomyces cerevisiae. Mol Cell 43:823–833CrossRefPubMedGoogle Scholar
  63. Murphy CT (2006) The search for DAF-16/FOXO transcriptional targets: approaches and discoveries. Exp Gerontol 41:910–921CrossRefPubMedGoogle Scholar
  64. Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, Li H, Kenyon C (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424:277–283CrossRefPubMedPubMedCentralGoogle Scholar
  65. Neumann CA, Krause DS, Carman CV, Das S, Dubey DP, Abraham JL, Bronson RT, Fujiwara Y, Orkin SH, Van Etten RA (2003) Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature 424:561–565CrossRefPubMedPubMedCentralGoogle Scholar
  66. Ogata T, Senoo T, Kawano S, Ikeda S (2016) Mitochondrial superoxide dismutase deficiency accelerates chronological aging in the fission yeast Schizosaccharomyces pombe. Cell Biol Int 40:100–106CrossRefPubMedGoogle Scholar
  67. Olahova M, Veal EA (2015) A peroxiredoxin, PRDX-2, is required for insulin secretion and insulin/IIS-dependent regulation of stress resistance and longevity. Aging Cell 14:558–568CrossRefPubMedPubMedCentralGoogle Scholar
  68. Olahova M, Taylor SR, Khazaipoul S, Wang J, Morgan BA, Matsumoto K, Blackwell TK, Veal EA (2008) A redox-sensitive peroxiredoxin that is important for longevity has tissue- and stress-specific roles in stress resistance. Proc Natl Acad Sci U S A 105:19839–19844CrossRefPubMedPubMedCentralGoogle Scholar
  69. Orr WC, Sohal RS (1993) Effects of cu-Zn superoxide dismutase overexpression on life span and resistance to oxidative stress in transgenic Drosophila melanogaster. Arch Biochem Biophys 301:34–40CrossRefPubMedGoogle Scholar
  70. Orr WC, Sohal RS (1994) Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263:1128–1130CrossRefPubMedGoogle Scholar
  71. Owusu-Ansah E, Song W, Perrimon N (2013) Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. Cell 155:699–712CrossRefPubMedGoogle Scholar
  72. Park SJ, Kim JH, Lee DG, Kim JM, Lee DS (2018) Peroxiredoxin 2 deficiency accelerates age-related ovarian failure through the reactive oxygen species-mediated JNK pathway in mice. Free Radic Biol Med 123:96–106CrossRefPubMedGoogle Scholar
  73. Paul A, Belton A, Nag S, Martin I, Grotewiel MS, Duttaroy A (2007) Reduced mitochondrial SOD displays mortality characteristics reminiscent of natural aging. Mech Ageing Dev 128:706–716CrossRefPubMedPubMedCentralGoogle Scholar
  74. Peralta D, Bronowska AK, Morgan B, Doka E, Van Laer K, Nagy P, Grater F, Dick TP (2015) A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. Nat Chem Biol 11:156–163CrossRefPubMedGoogle Scholar
  75. Perez VI, Van Remmen H, Bokov A, Epstein CJ, Vijg J, Richardson A (2009) The overexpression of major antioxidant enzymes does not extend the lifespan of mice. Aging Cell 8:73–75CrossRefPubMedGoogle Scholar
  76. Petriv OI, Rachubinski RA (2004) Lack of peroxisomal catalase causes a progeric phenotype in Caenorhabditis elegans. J Biol Chem 279:19996–20001CrossRefPubMedGoogle Scholar
  77. Phillips JP, Campbell SD, Michaud D, Charbonneau M, Hilliker AJ (1989) Null mutation of copper/zinc superoxide dismutase in Drosophila confers hypersensitivity to paraquat and reduced longevity. Proc Natl Acad Sci U S A 86:2761–2765CrossRefPubMedPubMedCentralGoogle Scholar
  78. Pillay CS, Hofmeyr JH, Olivier BG, Snoep JL, Rohwer JM (2009) Enzymes or redox couples? the kinetics of thioredoxin and glutaredoxin reactions in a systems biology context. Biochem J 417:269–275CrossRefPubMedGoogle Scholar
  79. Pitoniak A, Bohmann D (2015) Mechanisms and functions of Nrf2 signaling in Drosophila. Free Radic Biol Med 88:302–313CrossRefPubMedPubMedCentralGoogle Scholar
  80. Radyuk SN, Michalak K, Klichko VI, Benes J, Rebrin I, Sohal RS, Orr WC (2009) Peroxiredoxin 5 confers protection against oxidative stress and apoptosis and also promotes longevity in Drosophila. Biochem J 419:437–445CrossRefPubMedPubMedCentralGoogle Scholar
  81. Ran Q, Liang H, Ikeno Y, Qi W, Prolla TA, Roberts LJ 2nd, Wolf N, Van Remmen H, Richardson A (2007) Reduction in glutathione peroxidase 4 increases life span through increased sensitivity to apoptosis. J Gerontol A Biol Sci Med Sci 62:932–942CrossRefPubMedGoogle Scholar
  82. Ratnappan R, Amrit FR, Chen SW, Gill H, Holden K, Ward J, Yamamoto KR, Olsen CP, Ghazi A (2014) Germline signals deploy NHR-49 to modulate fatty-acid beta-oxidation and desaturation in somatic tissues of C. elegans. PLoS Genet 10:e1004829CrossRefPubMedPubMedCentralGoogle Scholar
  83. Ristow M, Zarse K (2010) How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis). Exp Gerontol 45:410–418CrossRefPubMedGoogle Scholar
  84. Sakamoto T, Maebayashi K, Nakagawa Y, Imai H (2014) Deletion of the four phospholipid hydroperoxide glutathione peroxidase genes accelerates aging in Caenorhabditis elegans. Genes Cells 19:778–792CrossRefPubMedGoogle Scholar
  85. Sakellariou GK, McDonagh B, Porter H, Giakoumaki II, Earl KE, Nye GA, Vasilaki A, Brooks SV, Richardson A, Van Remmen H et al (2018) Comparison of whole body SOD1 knockout with muscle-specific SOD1 knockout mice reveals a role for nerve redox signaling in regulation of degenerative pathways in skeletal muscle. Antioxid Redox Signal 28:275–295CrossRefPubMedPubMedCentralGoogle Scholar
  86. Sanz A (2016) Mitochondrial reactive oxygen species: Do they extend or shorten animal lifespan? Biochim Biophys Acta 1857:1116–1126CrossRefPubMedGoogle Scholar
  87. Schleit J, Johnson SC, Bennett CF, Simko M, Trongtham N, Castanza A, Hsieh EJ, Moller RM, Wasko BM, Delaney JR et al (2013) Molecular mechanisms underlying genotype-dependent responses to dietary restriction. Aging Cell 12:1050–1061CrossRefPubMedGoogle Scholar
  88. Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H et al (2005) Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308:1909–1911CrossRefPubMedGoogle Scholar
  89. Sentman ML, Granstrom M, Jakobson H, Reaume A, Basu S, Marklund SL (2006) Phenotypes of mice lacking extracellular superoxide dismutase and copper- and zinc-containing superoxide dismutase. J Biol Chem 281:6904–6909CrossRefPubMedGoogle Scholar
  90. Seto NO, Hayashi S, Tener GM (1990) Overexpression of Cu-Zn superoxide dismutase in Drosophila does not affect life-span. Proc Natl Acad Sci U S A 87:4270–4274CrossRefPubMedPubMedCentralGoogle Scholar
  91. Shpilka T, Haynes CM (2018) The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nat Rev Mol Cell Biol 19:109–120CrossRefPubMedGoogle Scholar
  92. Sideri T, Rallis C, Bitton DA, Lages BM, Suo F, Rodriguez-Lopez M, Du LL, Bahler J (2014) Parallel profiling of fission yeast deletion mutants for proliferation and for lifespan during long-term quiescence. G3 (Bethesda) 5:145–155CrossRefGoogle Scholar
  93. Sobotta MC, Liou W, Stocker S, Talwar D, Oehler M, Ruppert T, Scharf AN, Dick TP (2015) Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. Nat Chem Biol 11:64–70CrossRefPubMedGoogle Scholar
  94. Steinbaugh MJ, Narasimhan SD, Robida-Stubbs S, Moronetti Mazzeo LE, Dreyfuss JM, Hourihan JM, Raghavan P, Operana TN, Esmaillie R, Blackwell TK (2015) Lipid-mediated regulation of SKN-1/Nrf in response to germ cell absence. eLife 4Google Scholar
  95. Stocker S, Maurer M, Ruppert T, Dick TP (2018) A role for 2-Cys peroxiredoxins in facilitating cytosolic protein thiol oxidation. Nat Chem Biol 14:148–155CrossRefPubMedGoogle Scholar
  96. Sun J, Tower J (1999) FLP recombinase-mediated induction of Cu/Zn-superoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster flies. Mol Cell Biol 19:216–228CrossRefPubMedPubMedCentralGoogle Scholar
  97. Sun J, Folk D, Bradley TJ, Tower J (2002) Induced overexpression of mitochondrial Mn-superoxide dismutase extends the life span of adult Drosophila melanogaster. Genetics 161:661–672PubMedPubMedCentralGoogle Scholar
  98. Tang L, Choe KP (2015) Characterization of skn-1/wdr-23 phenotypes in Caenorhabditis elegans; pleiotrophy, aging, glutathione, and interactions with other longevity pathways. Mech Ageing Dev 149:88–98CrossRefPubMedGoogle Scholar
  99. Tavender TJ, Springate JJ, Bulleid NJ (2010) Recycling of peroxiredoxin IV provides a novel pathway for disulphide formation in the endoplasmic reticulum. EMBO J 29:4185–4197CrossRefPubMedPubMedCentralGoogle Scholar
  100. Thamsen M, Kumsta C, Li F, Jakob U (2011) Is overoxidation of peroxiredoxin physiologically significant? Antioxid Redox Signal 14:725–730CrossRefPubMedPubMedCentralGoogle Scholar
  101. Tomalin LE, Day AM, Underwood ZE, Smith GR, Dalle Pezze P, Rallis C, Patel W, Dickinson BC, Bahler J, Brewer TF et al (2016) Increasing extracellular H2O2 produces a bi-phasic response in intracellular H2O2, with peroxiredoxin hyperoxidation only triggered once the cellular H2O2-buffering capacity is overwhelmed. Free Radic Biol Med 95:333–348CrossRefPubMedPubMedCentralGoogle Scholar
  102. Tullet JM, Hertweck M, An JH, Baker J, Hwang JY, Liu S, Oliveira RP, Baumeister R, Blackwell TK (2008) Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell 132:1025–1038CrossRefPubMedPubMedCentralGoogle Scholar
  103. Unlu ES, Koc A (2007) Effects of deleting mitochondrial antioxidant genes on life span. Ann N Y Acad Sci 1100:505–509CrossRefPubMedGoogle Scholar
  104. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40CrossRefPubMedGoogle Scholar
  105. Van Raamsdonk JM (2018) Mechanisms underlying longevity: a genetic switch model of aging. Exp Gerontol 107:136–139CrossRefPubMedGoogle Scholar
  106. Van Raamsdonk JM, Hekimi S (2009) Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans. PLoS Genet 5:e1000361CrossRefPubMedPubMedCentralGoogle Scholar
  107. Van Raamsdonk JM, Hekimi S (2012) Superoxide dismutase is dispensable for normal animal lifespan. Proc Natl Acad Sci U S A 109:5785–5790CrossRefPubMedPubMedCentralGoogle Scholar
  108. Veal E, Day A (2011) Hydrogen peroxide as a signaling molecule. Antioxid Redox Signal 15:147–151CrossRefPubMedGoogle Scholar
  109. Veal EA, Findlay VJ, Day AM, Bozonet SM, Evans JM, Quinn J, Morgan BA (2004) A 2-Cys peroxiredoxin regulates peroxide-induced oxidation and activation of a stress-activated MAP kinase. Mol Cell 15:129–139CrossRefPubMedGoogle Scholar
  110. Veal EA, Underwood ZE, Tomalin LE, Morgan BA, Pillay CS (2018) Hyperoxidation of peroxiredoxins: gain or loss of function? Antioxid Redox Signal 28:574–590CrossRefPubMedGoogle Scholar
  111. Wakabayashi N, Itoh K, Wakabayashi J, Motohashi H, Noda S, Takahashi S, Imakado S, Kotsuji T, Otsuka F, Roop DR et al (2003) Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nat Genet 35:238–245CrossRefPubMedGoogle Scholar
  112. Weinberger M, Mesquita A, Caroll T, Marks L, Yang H, Zhang Z, Ludovico P, Burhans WC (2010) Growth signaling promotes chronological aging in budding yeast by inducing superoxide anions that inhibit quiescence. Aging (Albany NY) 2:709–726CrossRefGoogle Scholar
  113. Winterbourn CC (2008) Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 4:278–286CrossRefPubMedGoogle Scholar
  114. Woo HA, Jeong W, Chang TS, Park KJ, Park SJ, Yang JS, Rhee SG (2005) Reduction of cysteine sulfinic acid by sulfiredoxin is specific to 2-cys peroxiredoxins. J Biol Chem 280:3125–3128CrossRefPubMedGoogle Scholar
  115. Wood ZA, Poole LB, Karplus PA (2003a) Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300:650–653CrossRefPubMedGoogle Scholar
  116. Wood ZA, Schroder E, Robin Harris J, Poole LB (2003b) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28:32–40CrossRefPubMedGoogle Scholar
  117. Yang W, Li J, Hekimi S (2007) A measurable increase in oxidative damage due to reduction in superoxide detoxification fails to shorten the lifespan of lon-lived mitochondrial mutants of Caenorhabditis elegans. Genetics 177:2063–2074CrossRefPubMedPubMedCentralGoogle Scholar
  118. Yang W, Hekimi S (2010) A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biol 8:e1000556CrossRefPubMedPubMedCentralGoogle Scholar
  119. Zarse K, Schmeisser S, Groth M, Priebe S, Beuster G, Kuhlow D, Guthke R, Platzer M, Kahn CR, Ristow M (2012) Impaired insulin/IGF1 signaling extends life span by promoting mitochondrial L-proline catabolism to induce a transient ROS signal. Cell Metab 15:451–465CrossRefPubMedPubMedCentralGoogle Scholar
  120. Zito E, Melo EP, Yang Y, Wahlander A, Neubert TA, Ron D (2010) Oxidative protein folding by an endoplasmic reticulum-localized peroxiredoxin. Mol Cell 40:787–797CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Elizabeth Veal
    • 1
    Email author
  • Thomas Jackson
    • 1
  • Heather Latimer
    • 1
  1. 1.Institute for Cell and Molecular Biosciences and Institute for AgeingNewcastle UniversityTyneUK

Personalised recommendations