Advertisement

The Gut Microbiota and Ageing

  • Claire Maynard
  • David WeinkoveEmail author
Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 90)

Abstract

Understanding how the human gut microbiota might influence ageing is challenging. The gut microbiota is a hugely complex ecology of organisms that varies greatly with individuals and time, making age-related changes difficult to measure. However, elderly and younger populations do show differences in gut microbe composition. The key question is whether these differences only reflect age-related changes in host physiology and diet, or if microbes can drive host ageing? Model organisms allow this question to be addressed. Longitudinal analyses in the fruit fly Drosophila melanogaster show that changes in microbial composition precedes intestinal and host ageing, and antibiotic treatment increases lifespan, implicating microbes in accelerating ageing. Antibiotics also extend the lifespan of middle-aged killifish but additional transplantation of gut microbes from young killifish extends lifespan further, suggesting a positive effect of microbes associated with young animals. Microbes from old, but not young, mice induce inflammation when added to germ-free mice suggesting that microbes become more harmful to the host with age. These studies implicate broad classes of bacteria, particularly members of the phylum Proteobacteria, as drivers of ageing in a feed-forward loop with intestinal degradation and inflammation. The nematode Caenorhabditis elegans can be associated with single strains of genetically-tractable bacteria, and this simplified system has revealed specific interventions in bacterial metabolism, such as inhibition of bacterial folate synthesis, that extend animal lifespan. Transferring this understanding to the human microbiota is challenging but promises to reveal how manipulation of the gut microbiota might be a route to maintain health in old age.

Keywords

Human gut microbiota Dysbiosis Inflammation Intestinal permeability C. elegans Folate 

References

  1. Ahmad R, Sorrell MF, Batra SK, Dhawan P, Singh AB (2017) Gut permeability and mucosal inflammation: bad, good or context dependent. Mucosal Immunol 10(2):307–317.  https://doi.org/10.1038/mi.2016.128 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Backhed F, Manchester JK, Semenkovich CF, Gordon JI (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA 104(3):979–984.  https://doi.org/10.1073/pnas.0605374104 CrossRefPubMedGoogle Scholar
  3. Backhed F, Fraser CM, Ringel Y, Sanders ME, Sartor RB, Sherman PM, Versalovic J, Young V, Finlay BB (2012) Defining a healthy human gut microbiome: current concepts, future directions, and clinical applications. Cell Host Microbe 12(5):611–622.  https://doi.org/10.1016/j.chom.2012.10.012 CrossRefPubMedGoogle Scholar
  4. Bannister CA, Holden SE, Jenkins-Jones S, Morgan CL, Halcox JP, Schernthaner G, Mukherjee J, Currie CJ (2014) Can people with type 2 diabetes live longer than those without? A comparison of mortality in people initiated with metformin or sulphonylurea monotherapy and matched, non-diabetic controls. Diabetes Obes Metab 16(11):1165–1173.  https://doi.org/10.1111/dom.12354 CrossRefPubMedGoogle Scholar
  5. Belkaid Y, Hand TW (2014) Role of the microbiota in immunity and inflammation. Cell 157(1):121–141.  https://doi.org/10.1016/j.cell.2014.03.011 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Belkaid Y, Naik S (2013) Compartmentalized and systemic control of tissue immunity by commensals. Nat Immunol 14(7):646–653.  https://doi.org/10.1038/ni.2604 CrossRefPubMedGoogle Scholar
  7. Berg M, Stenuit B, Ho J, Wang A, Parke C, Knight M, Alvarez-Cohen L, Shapira M (2016) Assembly of the Caenorhabditis elegans gut microbiota from diverse soil microbial environments. ISME J 10(8):1998–2009.  https://doi.org/10.1038/ismej.2015.253 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, Nikkila J, Monti D, Satokari R, Franceschi C, Brigidi P, De Vos W (2010) Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One 5(5):e10667.  https://doi.org/10.1371/journal.pone.0010667 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Biagi E, Franceschi C, Rampelli S, Severgnini M, Ostan R, Turroni S, Consolandi C, Quercia S, Scurti M, Monti D, Capri M, Brigidi P, Candela M (2016) Gut microbiota and extreme longevity. Curr Biol 26(11):1480–1485.  https://doi.org/10.1016/j.cub.2016.04.016 CrossRefPubMedGoogle Scholar
  10. Biagi E, Rampelli S, Turroni S, Quercia S, Candela M, Brigidi P (2017) The gut microbiota of centenarians: signatures of longevity in the gut microbiota profile. Mech Ageing Dev 165(Pt B):180–184.  https://doi.org/10.1016/j.mad.2016.12.013 CrossRefPubMedGoogle Scholar
  11. Booijink CC, El-Aidy S, Rajilic-Stojanovic M, Heilig HG, Troost FJ, Smidt H, Kleerebezem M, De Vos WM, Zoetendal EG (2010) High temporal and inter-individual variation detected in the human ileal microbiota. Environ Microbiol 12(12):3213–3227.  https://doi.org/10.1111/j.1462-2920.2010.02294.x CrossRefPubMedGoogle Scholar
  12. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94PubMedPubMedCentralGoogle Scholar
  13. Broderick NA, Lemaitre B (2012) Gut-associated microbes of Drosophila melanogaster. Gut Microbes 3(4):307–321.  https://doi.org/10.4161/gmic.19896 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Broderick NA, Buchon N, Lemaitre B (2014) Microbiota-induced changes in Drosophila melanogaster host gene expression and gut morphology. MBio 5(3):e01117–e01114.  https://doi.org/10.1128/mBio.01117-14 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Brooks KK, Liang B, Watts JL (2009) The influence of bacterial diet on fat storage in C. elegans. PLoS One 4(10):e7545.  https://doi.org/10.1371/journal.pone.0007545 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Browning DF, Wells TJ, Franca FL, Morris FC, Sevastsyanovich YR, Bryant JA, Johnson MD, Lund PA, Cunningham AF, Hobman JL, May RC, Webber MA, Henderson IR (2013) Laboratory adapted Escherichia coli K-12 becomes a pathogen of Caenorhabditis elegans upon restoration of O antigen biosynthesis. Mol Microbiol 87(5):939–950.  https://doi.org/10.1111/mmi.12144 CrossRefPubMedGoogle Scholar
  17. Buchon N, Broderick NA, Poidevin M, Pradervand S, Lemaitre B (2009) Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Microbe 5(2):200–211.  https://doi.org/10.1016/j.chom.2009.01.003 CrossRefPubMedGoogle Scholar
  18. Cabreiro F, Gems D (2013) Worms need microbes too: microbiota, health and aging in Caenorhabditis elegans. EMBO Mol Med 5(9):1300–1310.  https://doi.org/10.1002/emmm.201100972 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cabreiro F, Au C, Leung KY, Vergara-Irigaray N, Cocheme HM, Noori T, Weinkove D, Schuster E, Greene ND, Gems D (2013) Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 153(1):228–239.  https://doi.org/10.1016/j.cell.2013.02.035 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Camilo E, Zimmerman J, Mason JB, Golner B, Russell R, Selhub J, Rosenberg IH (1996) Folate synthesized by bacteria in the human upper small intestine is assimilated by the host. Gastroenterology 110(4):991–998CrossRefGoogle Scholar
  21. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D (2007a) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56(7):1761–1772.  https://doi.org/10.2337/db06-1491 CrossRefPubMedGoogle Scholar
  22. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmee E, Cousin B, Sulpice T, Chamontin B, Ferrieres J, Tanti JF, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R (2007b) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56(7):1761–1772.  https://doi.org/10.2337/db06-1491 CrossRefPubMedGoogle Scholar
  23. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57(6):1470–1481.  https://doi.org/10.2337/db07-1403 CrossRefPubMedGoogle Scholar
  24. Cani PD, Osto M, Geurts L, Everard A (2012) Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes 3(4):279–288.  https://doi.org/10.4161/gmic.19625 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Chassaing B, Darfeuille-Michaud A (2011) The commensal microbiota and enteropathogens in the pathogenesis of inflammatory bowel diseases. Gastroenterology 140(6):1720–1728.  https://doi.org/10.1053/j.gastro.2011.01.054 CrossRefPubMedGoogle Scholar
  26. Chen J, Lee SM, Mao Y (2004) Protective effect of exopolysaccharide colanic acid of Escherichia coli O157:H7 to osmotic and oxidative stress. Int J Food Microbiol 93(3):281–286.  https://doi.org/10.1016/j.ijfoodmicro.2003.12.004 CrossRefPubMedGoogle Scholar
  27. Cho S, Roh K, Park J, Park YS, Lee M, Cho S, Kil EJ, Cho MJ, Oh JS, Byun HS, Cho SH, Park K, Kang H, Koo J, Yeom CH, Lee S (2017) Hydrolysis of hyaluronic acid in lymphedematous tissue alleviates fibrogenesis via TH1 cell-mediated cytokine expression. Sci Rep 7(1):35.  https://doi.org/10.1038/s41598-017-00085-z CrossRefPubMedPubMedCentralGoogle Scholar
  28. Claesson MJ, O’Toole PW (2010) Evaluating the latest high-throughput molecular techniques for the exploration of microbial gut communities. Gut Microbes 1(4):277–278.  https://doi.org/10.4161/gmic.1.4.12306 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Claesson MJ, Cusack S, O’Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, Marchesi JR, Falush D, Dinan T, Fitzgerald G, Stanton C, van Sinderen D, O’Connor M, Harnedy N, O’Connor K, Henry C, O’Mahony D, Fitzgerald AP, Shanahan F, Twomey C, Hill C, Ross RP, O’Toole PW (2011) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA 108(Suppl 1):4586–4591.  https://doi.org/10.1073/pnas.1000097107 CrossRefPubMedGoogle Scholar
  30. Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, Harris HM, Coakley M, Lakshminarayanan B, O’Sullivan O, Fitzgerald GF, Deane J, O’Connor M, Harnedy N, O’Connor K, O’Mahony D, van Sinderen D, Wallace M, Brennan L, Stanton C, Marchesi JR, Fitzgerald AP, Shanahan F, Hill C, Ross RP, O’Toole PW (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488(7410):178–184.  https://doi.org/10.1038/nature11319 CrossRefPubMedGoogle Scholar
  31. Clark RI, Walker DW (2018) Role of gut microbiota in aging-related health decline: insights from invertebrate models. Cell Mol Life Sci 75(1):93–101.  https://doi.org/10.1007/s00018-017-2671-1 CrossRefPubMedGoogle Scholar
  32. Clark RI, Salazar A, Yamada R, Fitz-Gibbon S, Morselli M, Alcaraz J, Rana A, Rera M, Pellegrini M, Ja WW, Walker DW (2015) Distinct shifts in microbiota composition during Drosophila aging impair intestinal function and drive mortality. Cell Rep 12(10):1656–1667.  https://doi.org/10.1016/j.celrep.2015.08.004 CrossRefPubMedPubMedCentralGoogle Scholar
  33. De Filippis F, Pellegrini N, Vannini L, Jeffery IB, La Storia A, Laghi L, Serrazanetti DI, Di Cagno R, Ferrocino I, Lazzi C, Turroni S, Cocolin L, Brigidi P, Neviani E, Gobbetti M, O’Toole PW, Ercolini D (2016) High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 65(11):1812–1821.  https://doi.org/10.1136/gutjnl-2015-309957 CrossRefPubMedGoogle Scholar
  34. Dirksen P, Marsh SA, Braker I, Heitland N, Wagner S, Nakad R, Mader S, Petersen C, Kowallik V, Rosenstiel P, Felix MA, Schulenburg H (2016) The native microbiome of the nematode Caenorhabditis elegans: gateway to a new host-microbiome model. BMC Biol 14:38.  https://doi.org/10.1186/s12915-016-0258-1 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Donaldson GP, Lee SM, Mazmanian SK (2016) Gut biogeography of the bacterial microbiota. Nat Rev Microbiol 14(1):20–32.  https://doi.org/10.1038/nrmicro3552 CrossRefPubMedGoogle Scholar
  36. Donini LM, Savina C, Cannella C (2009) Nutrition in the elderly: role of fiber. Arch Gerontol Geriatr 49(Suppl 1):61–69.  https://doi.org/10.1016/j.archger.2009.09.013 CrossRefPubMedGoogle Scholar
  37. Dukowicz AC, Lacy BE, Levine GM (2007) Small intestinal bacterial overgrowth: a comprehensive review. Gastroenterol Hepatol (NY) 3(2):112–122Google Scholar
  38. Durieux J, Wolff S, Dillin A (2011) The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell 144(1):79–91.  https://doi.org/10.1016/j.cell.2010.12.016 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Fei N, Zhao L (2013) An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice. ISME J 7(4):880–884.  https://doi.org/10.1038/ismej.2012.153 CrossRefPubMedGoogle Scholar
  40. Flint HJ (2012) The impact of nutrition on the human microbiome. Nutr Rev 70(Suppl 1):S10–S13.  https://doi.org/10.1111/j.1753-4887.2012.00499.x CrossRefPubMedGoogle Scholar
  41. Franceschi C (2007) Inflammaging as a major characteristic of old people: can it be prevented or cured? Nutr Rev 65(12 Pt 2):S173–S176CrossRefGoogle Scholar
  42. García-González AP, Ritter AD, Shrestha S, Andersen EC, Yilmaz LS, Walhout AJM (2017) Bacterial metabolism affects the C. elegans response to cancer chemotherapeutics. Cell 169(3):431–441.e438.  https://doi.org/10.1016/j.cell.2017.03.046 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Garigan D, Hsu AL, Fraser AG, Kamath RS, Ahringer J, Kenyon C (2002) Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation. Genetics 161(3):1101–1112PubMedPubMedCentralGoogle Scholar
  44. Garsin DA, Villanueva JM, Begun J, Kim DH, Sifri CD, Calderwood SB, Ruvkun G, Ausubel FM (2003) Long-lived C. elegans daf-2 mutants are resistant to bacterial pathogens. Science 300(5627):1921.  https://doi.org/10.1126/science.1080147 CrossRefPubMedGoogle Scholar
  45. Gems D, Riddle DL (2000) Defining wild-type life span in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 55(5):B215–B219CrossRefGoogle Scholar
  46. Hackmann C (1958) Observations on influenceability of age phenomena in experimental animals by peroral administration of combinations of 2-(p-aminobenzolsulfonamide)-pyrimidin. Munch Med Wochenschr 100(47):1814–1817PubMedGoogle Scholar
  47. Han B, Sivaramakrishnan P, Lin CJ, Neve IAA, He J, Tay LWR, Sowa JN, Sizovs A, Du G, Wang J, Herman C, Wang MC (2017) Microbial genetic composition tunes host longevity. Cell 169(7):1249–1262 e1213.  https://doi.org/10.1016/j.cell.2017.05.036 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Herndon LA, Schmeissner PJ, Dudaronek JM, Brown PA, Listner KM, Sakano Y, Paupard MC, Hall DH, Driscoll M (2002) Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419(6909):808–814.  https://doi.org/10.1038/nature01135 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Hughes ER, Winter MG, Duerkop BA, Spiga L, Furtado De Carvalho T, Zhu W, Gillis CC, Buttner L, Smoot MP, Behrendt CL, Cherry S, Santos RL, Hooper LV, Winter SE (2017) Microbial respiration and formate oxidation as metabolic signatures of inflammation-associated dysbiosis. Cell Host Microbe 21(2):208–219.  https://doi.org/10.1016/j.chom.2017.01.005 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Jeffery IB, Lynch DB, O’Toole PW (2016) Composition and temporal stability of the gut microbiota in older persons. ISME J 10(1):170–182.  https://doi.org/10.1038/ismej.2015.88 CrossRefPubMedGoogle Scholar
  51. Jump RL, Polinkovsky A, Hurless K, Sitzlar B, Eckart K, Tomas M, Deshpande A, Nerandzic MM, Donskey CJ (2014) Metabolomics analysis identifies intestinal microbiota-derived biomarkers of colonization resistance in clindamycin-treated mice. PLoS One 9(7):e101267.  https://doi.org/10.1371/journal.pone.0101267 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Keenan MJ, Marco ML, Ingram DK, Martin RJ (2015) Improving healthspan via changes in gut microbiota and fermentation. Age 37(5):98. https://doi.org/10.1007/s11357-015-9817-6
  53. King KC, Brockhurst MA, Vasieva O, Paterson S, Betts A, Ford SA, Frost CL, Horsburgh MJ, Haldenby S, Hurst GDD (2016) Rapid evolution of microbe-mediated protection against pathogens in a worm host. ISME J 10:1915.  https://doi.org/10.1038/ismej.2015.259 https://www.nature.com/articles/ismej2015259#supplementary-information CrossRefPubMedPubMedCentralGoogle Scholar
  54. Lagier JC, Raoult D (2016) Fecal microbiota transplantation: indications and perspectives. Med Sci (Paris) 32(11):991–997.  https://doi.org/10.1051/medsci/20163211015 CrossRefGoogle Scholar
  55. Langille MG, Meehan CJ, Koenig JE, Dhanani AS, Rose RA, Howlett SE, Beiko RG (2014) Microbial shifts in the aging mouse gut. Microbiome 2(1):50.  https://doi.org/10.1186/s40168-014-0050-9 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Larsen PL, Clarke CF (2002) Extension of life-span in Caenorhabditis elegans by a diet lacking coenzyme Q. Science 295(5552):120–123.  https://doi.org/10.1126/science.1064653 CrossRefPubMedGoogle Scholar
  57. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444(7122):1022–1023.  https://doi.org/10.1038/4441022a CrossRefPubMedGoogle Scholar
  58. Macfarlane S, Macfarlane GT (2003) Regulation of short-chain fatty acid production. Proc Nutr Soc 62(1):67–72.  https://doi.org/10.1079/PNS2002207 CrossRefPubMedGoogle Scholar
  59. MacNeil LT, Watson E, Arda HE, Zhu LJ, Walhout AJ (2013) Diet-induced developmental acceleration independent of TOR and insulin in C. elegans. Cell 153(1):240–252.  https://doi.org/10.1016/j.cell.2013.02.049 CrossRefPubMedGoogle Scholar
  60. Macpherson AJ, Uhr T (2004) Compartmentalization of the mucosal immune responses to commensal intestinal bacteria. Ann N Y Acad Sci 1029:36–43.  https://doi.org/10.1196/annals.1309.005 CrossRefPubMedGoogle Scholar
  61. Magnusdottir S, Ravcheev D, de Crecy-Lagard V, Thiele I (2015) Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front Genet 6:148.  https://doi.org/10.3389/fgene.2015.00148 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Man AL, Bertelli E, Rentini S, Regoli M, Briars G, Marini M, Watson AJ, Nicoletti C (2015) Age-associated modifications of intestinal permeability and innate immunity in human small intestine. Clin Sci (Lond) 129(7):515–527.  https://doi.org/10.1042/CS20150046 CrossRefGoogle Scholar
  63. Marteau P, Chaput U (2011) Bacteria as trigger for chronic gastrointestinal disorders. Dig Dis 29(2):166–171.  https://doi.org/10.1159/000323879 CrossRefPubMedGoogle Scholar
  64. Matsuoka K, Kanai T (2015) The gut microbiota and inflammatory bowel disease. Semin Immunopathol 37(1):47–55.  https://doi.org/10.1007/s00281-014-0454-4 CrossRefPubMedGoogle Scholar
  65. Maynard CA, Cummins I, Green JG, Weinkove D (2018) A bacterial route for folic acid supplementation. BMC Biol 16:67. https://doi.org/10.1186/s12915-018-0534-3
  66. McGee MD, Weber D, Day N, Vitelli C, Crippen D, Herndon LA, Hall DH, Melov S (2011) Loss of intestinal nuclei and intestinal integrity in aging C. elegans. Aging Cell 10(4):699–710.  https://doi.org/10.1111/j.1474-9726.2011.00713.x CrossRefPubMedPubMedCentralGoogle Scholar
  67. Mukhopadhya I, Hansen R, El-Omar EM, Hold GL (2012) IBD-what role do Proteobacteria play? Nat Rev Gastroenterol Hepatol 9(4):219–230.  https://doi.org/10.1038/nrgastro.2012.14 CrossRefPubMedGoogle Scholar
  68. Nagao-Kitamoto H, Shreiner AB, Gillilland MG 3rd, Kitamoto S, Ishii C, Hirayama A, Kuffa P, El-Zaatari M, Grasberger H, Seekatz AM, Higgins PD, Young VB, Fukuda S, Kao JY, Kamada N (2016) Functional characterization of inflammatory bowel disease-associated gut dysbiosis in gnotobiotic mice. Cell Mol Gastroenterol Hepatol 2(4):468–481.  https://doi.org/10.1016/j.jcmgh.2016.02.003 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Ni J, Shen TD, Chen EZ, Bittinger K, Bailey A, Roggiani M, Sirota-Madi A, Friedman ES, Chau L, Lin A, Nissim I, Scott J, Lauder A, Hoffmann C, Rivas G, Albenberg L, Baldassano RN, Braun J, Xavier RJ, Clish CB, Yudkoff M, Li H, Goulian M, Bushman FD, Lewis JD, Wu GD (2017) A role for bacterial urease in gut dysbiosis and Crohn’s disease. Sci Transl Med 9(416):pii: eaah6888.  https://doi.org/10.1126/scitranslmed.aah6888 CrossRefGoogle Scholar
  70. Nimmons D, Limdi JK (2016) Elderly patients and inflammatory bowel disease. World J Gastrointest Pharmacol Ther 7(1):51–65.  https://doi.org/10.4292/wjgpt.v7.i1.51 CrossRefPubMedPubMedCentralGoogle Scholar
  71. O’Keefe SJ, Ou J, Aufreiter S, O’Connor D, Sharma S, Sepulveda J, Fukuwatari T, Shibata K, Mawhinney T (2009) Products of the colonic microbiota mediate the effects of diet on colon cancer risk. J Nutr 139(11):2044–2048.  https://doi.org/10.3945/jn.109.104380 CrossRefPubMedGoogle Scholar
  72. O’Toole PW, Jeffery IB (2018) Microbiome-health interactions in older people. Cell Mol Life Sci 75(1):119–128.  https://doi.org/10.1007/s00018-017-2673-z CrossRefPubMedGoogle Scholar
  73. Pallister T, Spector TD (2016) Food: a new form of personalised (gut microbiome) medicine for chronic diseases? J R Soc Med 109(9):331–336.  https://doi.org/10.1177/0141076816658786 CrossRefPubMedGoogle Scholar
  74. Papakonstantinou E, Roth M, Karakiulakis G (2012) Hyaluronic acid: a key molecule in skin aging. Dermatoendocrinol 4(3):253–258.  https://doi.org/10.4161/derm.21923 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Park BS, Lee JO (2013) Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp Mol Med 45:e66.  https://doi.org/10.1038/emm.2013.97 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Peppercorn MA (1990) Advances in drug therapy for inflammatory bowel disease. Ann Intern Med 112(1):50–60CrossRefGoogle Scholar
  77. Pereira FC, Berry D (2017) Microbial nutrient niches in the gut. Environ Microbiol 19(4):1366–1378.  https://doi.org/10.1111/1462-2920.13659 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Peterson CT, Sharma V, Elmén L, Peterson SN (2015) Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota. Clin Exp Immunol 179(3):363–377.  https://doi.org/10.1111/cei.12474 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Pilotto A, Franceschi M, Leandro G, Longo MG, Perri F, Scarcelli C (2004) Helicobacter pylori infection and the risk of gastro-duodenal damage in symptomatic elderly chronic low-dose aspirin users: effect of antisecretory drugs. Age Ageing 33(4):402–404.  https://doi.org/10.1093/ageing/afh099 CrossRefPubMedGoogle Scholar
  80. Portal-Celhay C, Bradley ER, Blaser MJ (2012) Control of intestinal bacterial proliferation in regulation of lifespan in Caenorhabditis elegans. BMC Microbiol 12:49.  https://doi.org/10.1186/1471-2180-12-49 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Meta HITC, Bork P, Ehrlich SD, Wang J (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65.  https://doi.org/10.1038/nature08821 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Rampelli S, Candela M, Turroni S, Biagi E, Collino S, Franceschi C, O’Toole PW, Brigidi P (2013) Functional metagenomic profiling of intestinal microbiome in extreme ageing. Aging (Albany NY) 5(12):902–912.  https://doi.org/10.18632/aging.100623 CrossRefGoogle Scholar
  83. Reinke SN, Hu X, Sykes BD, Lemire BD (2010) Caenorhabditis elegans diet significantly affects metabolic profile, mitochondrial DNA levels, lifespan and brood size. Mol Genet Metab 100(3):274–282.  https://doi.org/10.1016/j.ymgme.2010.03.013 CrossRefPubMedGoogle Scholar
  84. Rera M, Bahadorani S, Cho J, Koehler CL, Ulgherait M, Hur JH, Ansari WS, Lo T Jr, Jones DL, Walker DW (2011) Modulation of longevity and tissue homeostasis by the Drosophila PGC-1 homolog. Cell Metab 14(5):623–634.  https://doi.org/10.1016/j.cmet.2011.09.013 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Rera M, Clark RI, Walker DW (2012) Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in Drosophila. Proc Natl Acad Sci USA 109(52):21528–21533.  https://doi.org/10.1073/pnas.1215849110 CrossRefPubMedGoogle Scholar
  86. Saiki R, Lunceford AL, Bixler T, Dang P, Lee W, Furukawa S, Larsen PL, Clarke CF (2008) Altered bacterial metabolism, not coenzyme Q content, is responsible for the lifespan extension in Caenorhabditis elegans fed an Escherichia coli diet lacking coenzyme Q. Aging Cell 7(3):291–304.  https://doi.org/10.1111/j.1474-9726.2008.00378.x CrossRefPubMedPubMedCentralGoogle Scholar
  87. Samuel BS, Rowedder H, Braendle C, Felix MA, Ruvkun G (2016) Caenorhabditis elegans responses to bacteria from its natural habitats. Proc Natl Acad Sci USA 113(27):E3941–E3949.  https://doi.org/10.1073/pnas.1607183113 CrossRefPubMedGoogle Scholar
  88. Scott TA, Quintaneiro LM, Norvaisas P, Lui PP, Wilson MP, Leung K-Y, Herrera-Dominguez L, Sudiwala S, Pessia A, Clayton PT, Bryson K, Velagapudi V, Mills PB, Typas A, Greene NDE, Cabreiro F (2017) Host-microbe co-metabolism dictates cancer drug efficacy in C. elegans. Cell 169(3):442–456 e418. doi: https://doi.org/10.1016/j.cell.2017.03.040 CrossRefGoogle Scholar
  89. Shin NR, Whon TW, Bae JW (2015) Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol 33(9):496–503.  https://doi.org/10.1016/j.tibtech.2015.06.011 CrossRefPubMedGoogle Scholar
  90. Smith P, Willemsen D, Popkes M, Metge F, Gandiwa E, Reichard M, Valenzano DR (2017) Regulation of life span by the gut microbiota in the short-lived African turquoise killifish. Elife 6:e27014.  https://doi.org/10.7554/eLife.27014 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Thevaranjan N, Puchta A, Schulz C, Naidoo A, Szamosi JC, Verschoor CP, Loukov D, Schenck LP, Jury J, Foley KP, Schertzer JD, Larche MJ, Davidson DJ, Verdu EF, Surette MG, Bowdish DME (2017) Age-associated microbial Dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe 21(4):455–466 e454.  https://doi.org/10.1016/j.chom.2017.03.002 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Tian X, Azpurua J, Hine C, Vaidya A, Myakishev-Rempel M, Ablaeva J, Mao Z, Nevo E, Gorbunova V, Seluanov A (2013) High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature 499(7458):346–349.  https://doi.org/10.1038/nature12234 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Tropini C, Earle KA, Huang KC, Sonnenburg JL (2017) The gut microbiome: connecting spatial organization to function. Cell Host Microbe 21(4):433–442.  https://doi.org/10.1016/j.chom.2017.03.010 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI (2007) The human microbiome project. Nature 449(7164):804–810 nature06244 [pii]10.1038/nature06244CrossRefGoogle Scholar
  95. Valentini L, Ramminger S, Haas V, Postrach E, Werich M, Fischer A, Koller M, Swidsinski A, Bereswill S, Lochs H, Schulzke JD (2014) Small intestinal permeability in older adults. Physiol Rep 2(4):e00281.  https://doi.org/10.14814/phy2.281 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Virk B, Correia G, Dixon DP, Feyst I, Jia J, Oberleitner N, Briggs Z, Hodge E, Edwards R, Ward J, Gems D, Weinkove D (2012) Excessive folate synthesis limits lifespan in the C. elegans: E. coli aging model. BMC Biol 10:67.  https://doi.org/10.1186/1741-7007-10-67 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Virk B, Jia J, Maynard CA, Raimundo A, Lefebvre J, Richards SA, Chetina N, Liang Y, Helliwell N, Cipinska M, Weinkove D (2016) Folate acts in E. coli to Accelerate C. elegans aging independently of bacterial biosynthesis. Cell Rep 14(7):1611–1620.  https://doi.org/10.1016/j.celrep.2016.01.051 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Winter SE, Winter MG, Xavier MN, Thiennimitr P, Poon V, Keestra AM, Laughlin RC, Gomez G, Wu J, Lawhon SD, Popova IE, Parikh SJ, Adams LG, Tsolis RM, Stewart VJ, Baumler AJ (2013) Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science 339(6120):708–711.  https://doi.org/10.1126/science.1232467 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI (2012) Human gut microbiome viewed across age and geography. Nature 486(7402):222–227.  https://doi.org/10.1038/nature11053 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Yilmaz LS, Walhout AJ (2014) Worms, bacteria, and micronutrients: an elegant model of our diet. Trends Genet 30(11):496–503.  https://doi.org/10.1016/j.tig.2014.07.010 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Zhao Y, Gilliat AF, Ziehm M, Turmaine M, Wang H, Ezcurra M, Yang C, Phillips G, McBay D, Zhang WB, Partridge L, Pincus Z, Gems D (2017) Two forms of death in ageing Caenorhabditis elegans. Nat Commun 8:15458.  https://doi.org/10.1038/ncomms15458 https://www.nature.com/articles/ncomms15458#supplementary-information CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of BiosciencesDurham UniversityDurhamUK
  2. 2.Centre d’Immunologie de Marseille-LuminyAix-Marseille University, CNRS, INSERMMarseilleFrance

Personalised recommendations