Skip to main content

Integrated Management of Phytoplasma Diseases

  • Chapter
  • First Online:
Phytoplasmas: Plant Pathogenic Bacteria - II

Abstract

Sustainable approaches to control phytoplasma-associated diseases are of utmost importance. The use of phytoplasma-resistant host plants and of phytoplasma-free material for new plantings could represent a starting point for phytoplasma disease management. The early identification of infected host plants and insect vectors represent necessary tools in preventing epidemics of diseases through the appropriate management of agro-ecosystems subjected to epidemic outbreaks. This approach can be integrated with the use of resistance inducers and of biocontrol microorganisms able to act as against phytoplasmas and/or their insect vectors. Furthermore comparative genomic approach facilitates the identification of candidate genes involved in the interactions with hosts, and together with the cultivation of phytoplasmas is a key point for improving the knowledge of these bacterial pathogens aimed to implement effective integrated management control strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Jawdah Y, Karakashian A, Sobh H, Martini M, Lee I-M (2002) An epidemic of almond witches’ broom in Lebanon: classification and phylogenetic relationship of the associated phytoplasma.Plant Disease 86, 477–484.

    Google Scholar 

  • Abou-Jawdah Y, Abou-Fakhr E, Sobn H, Molino Lova M, Vercesi A, Bianco PA (2010) Almond witches’ broom phytoplasma (‘Candidatus Phytoplasma phoenicium’): a real threat to almond, peach and nectarine. Julius-Kühn Archiv 427, 418–420.

    Google Scholar 

  • Alekseev YI, Daricheva MA, Zavodchikova VV, Kamalov K, Niyazov OD, Sukhoruchenko GI (1976) The arthropod fauna of cotton in the Murgab oasis. In: Ekologiya i khozyaistvennoe znachenie nasekomykh Turkmenii. Ylim, Ashkhabad, Union of Sovietic Socialistic Republic, 518 pp.

    Google Scholar 

  • Alma A, Daffonchio D, Gonella E, Raddadi N (2010) Microbial symbionts of Auchenorrhyncha transmitting phytoplasmas: a resource for symbiotic control of phytoplasmoses. In: Phytoplasmas: Genomes, Plant Hosts and Vectors. Eds Weintraub PG, Jones P. CABI, Wallingford, United Kingdom, 272–292 pp.

    Google Scholar 

  • Been BO (1982) Botany/Plant Breeding. 21st Report (1981–82) Research Department Coconut Industry Board. Kingston, Jamaica, 8–18 pp.

    Google Scholar 

  • Been BO (1995) Integrated pest management for the control of lethal yellowing: quarantine, cultural practices and optimal use of hybrids. In: Lethal Yellowing: Research and Practical Aspects. Eds Oropeza C, Howard FW, Ashburner GR. Kluwer Academic Publishers, The Netherlands, 101–109 pp.

    Google Scholar 

  • Belli G, Bianco PA, Conti M (2010) Grapevine yellows: past, present and future. Journal of Plant Pathology 92, 303–326.

    Google Scholar 

  • Bellomo C, Carraro L, Ermacora P, Pavan F, Osler R, Frausin C, Governatori G (2007) Recovery phenomena in grapevine affected by grapevine yellows in Friuli Venezia Giulia. Bulletin of Insectology 60, 235–236.

    Google Scholar 

  • Bianco PA, Bulgari D, Casati P, Quaglino F (2011) Conventional and novel strategies for the phytoplasma diseases containment. Phytopathogenic Mollicutes 1, 77–82.

    Article  Google Scholar 

  • Bosco D, Mori N (2013) “Flavescence dorée” vector control in Italy. Phytopathogenic Mollicutes 3, 40–43.

    Article  Google Scholar 

  • Braccini P, Nasca M (2008) Influence of some environmental factors on the phenomenon of recovery in “bois noir” affected vines. Petria 18, 363–365.

    Google Scholar 

  • Bulgari D, Casati P, Crepaldi P, Daffonchio D, Quaglino F, Brusetti L, Bianco PA (2011) Restructuring of endophytic bacterial communities in grapevine yellows-diseased and recovered Vitis vinifera L. plants. Applied and Environmental Microbiology 77, 5018–5022.

    Google Scholar 

  • Cardeña R, Ashburner GR, Oropeza C (1999) Prospects for marker assisted breeding of lethal yellowing-resistant coconuts. In: Current Advances in Coconut Biotechnology. Eds Oropeza C, Verdeil J-L, Ashburner GR, Cardeña R, Santamaría J. Kluwer Academic Publishers, Dordrecht/Boston/London, 145–160 pp.

    Google Scholar 

  • Casati P, Jermini M, Quaglino F, Corbani G, Schaerer S, Passera A, Bianco PA, Rigamonti IE (2017) New insights on “flavescence dorée” phytoplasma ecology in the vineyard agro-ecosystem in southern Switzerland. Annals of Applied Biology 171, 37–51.

    Google Scholar 

  • Caudwell A (1961) Les phénomènes de rétablissement chez la flavescence dorée de la vigne. Annales de l’Epiphytie 12, 347–354.

    Google Scholar 

  • Chou I, Ma N (1981) On some new species and new records of Typhlocybinae from China (Homptera: Cicadellidae). Entomotaxonomia 3, 191–210.

    Google Scholar 

  • Choueiri E, Jreijiri S, Verdin E, Bovè J-M, Garnier M (2001) First report of a phytoplasma disease of almond (Prunus amygdalus) in Lebanon. Plant Disease 85, 802.

    Google Scholar 

  • Chuche J, Danet J-L, Salar P, Foissac X, Thiery D (2016) Transmission of ‘Candidatus Phytoplasma solani’ by Reptalus quinquecostatus (Hemiptera: Cixiidae). Annals of Applied Biology 169, 214–223.

    Google Scholar 

  • Coconut Industry Board (1971) The coconut Industry in Jamaica. Unpublished.

    Google Scholar 

  • Constable FE, Gibb KS, Symons RH (2003) The seasonal distribution of phytoplasmas in Australian grapevines. Plant Pathology 52, 267–276.

    Google Scholar 

  • Contaldo N, Satta E, Zambon Y, Paltrinieri S, Bertaccini A (2016) Development and evaluation of different complex media for phytoplasma isolation and growth. Journal of Microbiological Methods 127, 105–110.

    Google Scholar 

  • Coutinho J, Amado C, Barateiro A, Quartau J, Rebelo T (2015) First record of the leafhopper Asymmetrasca decedens (Homoptera: Cidadellidae) in mainland Portugal. Revista de Ciências Agrárias 38, 213–219.

    Google Scholar 

  • Cvrković T, Jovic J, Mitrovic M, Krstic Q, Tosevski I (2014) Experimental and molecular evidence of Reptalus panzeri as a natural vector of “bois noir”. Plant Pathology 63, 42–53.

    Google Scholar 

  • Dery SK, N’Cho Yp, Sangare A, Arkhurst ED (1997) Cape St. Paul Wilt disease: resistance screening and prospects for rehabilitating the coconut industry in Ghana. International Workshop on Lethal Yellowing-like Diseases of Coconut. Elmina, Ghana, November, 1995, Chatham, United Kindgom, 147–151.

    Google Scholar 

  • Eden-Green SJ (1997) History, world distribution and present status of lethal yellowing-like diseases of palms. International Workshop on Lethal Yellowing-like Diseases of Coconut. Elmina, Ghana, November, 1995, Chatam, United Kingdom, 1–30.

    Google Scholar 

  • EFSA PHL Panel (2014) EFSA Journal 12, 27.

    Google Scholar 

  • Ekpo EN, Ojomo EE (1990) The spread of lethal coconut diseases in West Africa: incidence of “Awka” disease (or bronze leaf wilt) in the Ishan area of Bendel state of Nigeria. Principes 34, 143–146.

    Google Scholar 

  • Ember I, Bodor P, Zsófi Z, Pálfi Z, Ladányi M, Pásti G, Deák T, Sárdy Nyitrainé D, Bálo B, Szekeres A, Bencsik O, Foissac X, Palkovics L, Hunter JJ, Bisztray GD (2018) “Bois noir” affects the yield and wine quality of Vitis vinifera L. cv. Chardonnay. European Journal of Plant Pathology 152, 185–197.

    Google Scholar 

  • Endeshaw S, Murolo S, Romanazzi G, Neri D (2012) Effects of “bois noir” on carbon assimilation, transpiration, stomatal conductance of leaves and yield of grapevine (Vitis vinifera) cv. Chardonnay. Physiology of Plants 145, 286–295.

    Article  CAS  Google Scholar 

  • EPPO PRA 17–23265 (2017) Pest risk analysis for ‘Candidatus Phytoplasma phoenicium’ (Bacteria: Acholeplasmataceae) causing almond witches’ broom. https://gd.eppo.int/taxon/PHYPPH.

  • Eriksson A, Anfora G, Lucchi A, Lanzo F, Virant-Doberlet M, Mazzoni V (2012) Exploitation of insect vibrational signals reveals a new method of pest management. Plos One 7, e32954.

    Google Scholar 

  • Filippin L, Jovic J, Cvrkovic T, Forte V, Clair D, Tosevski I, Boudon-Padieu E, Borgo M, Angelini E (2009) Molecular characteristics of phytoplasmas associated with “flavescence dorée” in clematis and grapevine and preliminary results on the role of Dictyophara europaea as a vector. Plant Pathology 58, 826–837.

    Google Scholar 

  • Freitas N, Aguin-Pombo D (2006) Distribution, food plants and control of Asymmetrasca decedens (Paoli, 1932) (Hemiptera: Cicadellidae). Boletim do Museu Municipal do Funchal 57, 11–27.

    Google Scholar 

  • Garau R, Tolu G, Prota VA, Sechi A (2004) Differential reactivity of grapevine cultivars to “bois noir” infections in Sardinia.Journal of Plant Pathology 86, 320.

    Google Scholar 

  • Garau R, Prota VA, Sechi S, Moro G (2008) Biostimulants distribution to plants affected by “bois noir”: results regarding recovery. Petria 18, 366–368.

    Google Scholar 

  • Ghayeb Zamharir MG (2011) Phytoplasmas associated with almond witches’ broom disease: an overview. African Journal of Microbiology Research 5, 6013–6017.

    Google Scholar 

  • Gonella E, Negri I, Marzorati M, Mandrioli M, Sacchi L, Pajoro M, Crotti E, Rizzi A, Clementi E, Tedeschi R, Bandi C, Alma A, Daffonchio D (2011) Bacterial endosymbiont localization in Hyalesthes obsoletus, the insect vector of “bois noir” in Vitis vinifera. Applied and Environmental Microbiology 77, 1423–1435.

    Google Scholar 

  • Gonella E, Crotti E, Rizzi A, Mandrioli M, Favia G, Daffonchio D, Alma A (2012) Horizontal transmission of the symbiotic bacterium Asaia sp. in the leafhopper Scaphoideus titanus Ball (Hemiptera: Cicadellidae). BMC Microbiology 12(Supplement 1), S4.

    Google Scholar 

  • Johnston JR (1909) The bud rot of coconut palm. USDA Bureau Plant Industry Circular, 36.

    Google Scholar 

  • Johnston JR (1912) The history and cause of the coconut bud rot. USDA Bureau Plant Industry Bulletin, 228.

    Google Scholar 

  • Khan MA, Nighat M (1990) Some new records of jassids associated with mulberry plants in Kashmir. Indian Journal of Sericulture 29, 149–150.

    Google Scholar 

  • Kosovac A, Radonjić S, Hrnčić S, Krstić O, Toševski I, Jović J (2016) Molecular tracing of the transmission routes of “bois noir” in Mediterranean vineyards of Montenegro and experimental evidence for the epidemiological role of Vitex agnus-castus (Lamiaceae) and associated Hyalestes obsoletus (Cixiidae). Plant Pathology 65, 285–298.

    Google Scholar 

  • Kullaya A, Mpunami A, Harris HC, Schuiling M, Kaiza DA (1997) Lethal disease resistance screening in Tanzania and prospects for rehabilitation. International Workshop on Lethal Yellowing-Like Diseases of Coconut. Elmina, Ghana, November, 1995, Chatham, United Kingdom, 163–172.

    Google Scholar 

  • Landi L, Romanazzi G (2011) Seasonal variation of defense-related gene expression in leaves from “bois noir” affected and recovered grapevines. Journal of Agricultural and Food Chemistry 59, 6628–6637.

    Google Scholar 

  • Landi L, Riolo P, Murolo S, Romanazzi G, Nardi S, Isidoro N (2015) Genetic variability of “stolbur” phytoplasma in Hyalesthes obsoletus (Hemiptera: Cixiidae) and its main host plants in vineyard agroecosystems. Journal of Economic Entomology 108, 1506–1515.

    Google Scholar 

  • Langer M, Maixner M (2004) Molecular characterization of grapevine yellows associated phytoplasmas of the “stolbur”-group based on RFLPanalysis of non-ribosomal DNA. Vitis 43, 191–200.

    CAS  Google Scholar 

  • Langer M, Darimont H, Maixner M (2003) Control of phytoplasma vectors in organic viticulture. IOBC/WPRS Bulletin 26, 197–202.

    Google Scholar 

  • Lessio F, Alma A (2006) Spatial distribution of nymphs of Scaphoideus titanus (Homoptera: Cicadellidae) in grapes, and evaluation of sequential sampling plans. Journal of Economic Entomology 99, 578–582.

    Google Scholar 

  • Lessio F, Tedeschi R, Alma A (2007) Presence of Scaphoideus titanus on American grapevine in woodlands, and infection with “flavescence dorée” phytoplasmas. Bulletin of Insectology 60, 373–374.

    Google Scholar 

  • Lessio F, Picciau L, Gonella E, Mandrioli M, Tota F, Alma A (2016) The mosaic leafhopper Orientus ishidae: host plants, spatial distribution, infectivity and transmission of 16SrV phytoplasma to grapevines. Bulletin of Insectology 69, 277–289.

    Google Scholar 

  • Liu Y, Fletcher MJ, Dietrich CH, Zhang Y-L (2014) New species and records of Asymmetrasca (Hemiptera: Cicadellidae: Typhlocybinae: Empoascini) from China and name changes in Empoasca (Matsumurasca). Zootaxa 3768, 327–350.

    Article  Google Scholar 

  • Lodos N, Kalkandelen A (1983) Preliminary list of Auchenorrhyncha with notes on distribution and importance of species in Turkey. XII. Family Cicadellidae Typhlocybinae Empoascini. Türkiye Bitki Koruma Dergisi 7, 153–165.

    Google Scholar 

  • Maixner M (2006) Temporal behaviour of grapevines infected by type II of “Vergilbungskrankheit” (“bois noir”). 15th Meeting of ICVG, Stellenbosch, South Africa, 223–224.

    Google Scholar 

  • Maixner M (2007) Biology of Hyalesthes obsoletus and approaches to control this soil borne vector of “bois noir” disease. IOBC/WPRS Bulletin 30, 3–9.

    Google Scholar 

  • Maixner M (2011) Recent advances in “bois noir” research. Petria 21, 17–32.

    Google Scholar 

  • Maixner M, Ahrens U, Seemüller E (1995) Detection of the German grapevine yellows ("Vergilbungskrankheit") MLO in grapevine, alternative hosts and a vector by a specific PCR procedure. European Journal of Plant Pathology 101, 241–250.

    Google Scholar 

  • Martyn EB (1945) Coconut diseases of Jamaica (I). Bronze leaf wilt and other diseases affecting the bud of coconuts (II). Diseases affecting the leaves, crown and stem of coconuts. Tropical Agriculture 22, 69–76.

    Google Scholar 

  • Mazzoni V, Prešern J, Lucchi A, Virant-Doberlet M (2009) Reproductive strategy of the Nearctic leafhopper Scaphoideus titanus Ball (Hemiptera: Cicadellidae). Bulletin of Entomological Research 99, 401–413.

    Google Scholar 

  • McCoy RE (1972) Remission of lethal yellowing in coconut palm treated with tetracycline antibiotics. Plant Disease Reporter 56, 1019–1021.

    CAS  Google Scholar 

  • McCoy RE, Howard FW, Tsai JH, Donselman HM, Thomas DL, Basham HG, Atilano RA, Eskafi FM, Britt L, Collins ME (1983) Lethal yellowing of palms. Agricultural Experiment Station Bulletin, Gainesville, Florida, USA 834, 1–100.

    Google Scholar 

  • Minato N, Himeno M, Hoshi A, Maejima K, Komatsu K, Takebayashi Y, Kasahara H, Yusa A, Yamaji Y, Oshima K, Kamiya Y, Namba S (2014) The phytoplasmal virulence factor TENGU causes plant sterility by downregulating of the jasmonic acid and auxin pathways. Scientific Reports 4, 7399.

    Google Scholar 

  • Molino Lova M (2011) Epidemiological and molecular study on ‘Candidatus Phytoplasma phoenicium’ in Lebanon. PhD thesis. Università degli Studi di Milano, Italy.

    Google Scholar 

  • Molino Lova M, Quaglino F, Abou-Jawdah Y, Choueiri E, Sobh H, Casati P, Tedeschi R, Alma A, Bianco P (2011) Identification of new 16SrIX subgroups,-F and-G, among ‘Candidatus Phytoplasma phoenicium’ strains infecting almond, peach and nectarine in Lebanon. Phytopathologia Mediterranea 50, 273–282.

    Google Scholar 

  • Mori N, Martini M, Bressan A, Guadagnini M, Girolami V, Bertaccini A (2002) Experimental transmission by Scaphoideus titanus Ball of two “flavescence dorée”-types phytoplasmas. Vitis 41, 99–102.

    Google Scholar 

  • Mori N, Pavan F, Bondavalli R, Reggiani N, Paltrinieri S, Bertaccini A (2008) Factors affecting the spread of “bois noir” disease in north Italy vineyards. Vitis 47, 65–72.

    Google Scholar 

  • Mori N, Pavan F, Reggiani N, Bacchiavini M, Mazzon L, Paltrinieri S, Bertaccini A (2012) Correlation of “bois noir” disease with nettle and vector abundance in northern Italy vineyards. Journal of Pest Science 85, 23–28.

    Google Scholar 

  • Mori N, Pavan F, Maixner M (2014) Control of Hyalesthes obsoletus nymphs based on chemical weeding and insecticides applied on Urtica dioica. Vitis 53, 103–109.

    Google Scholar 

  • Mori N, Quaglino F, Tessari F, Pozzebon A, Bulgari D, Casati P, Bianco PA (2015) Investigation on “bois noir” epidemiology in north-eastern Italian vineyards through a multidisciplinary approach. Annals of Applied Biology 166, 75–89.

    Google Scholar 

  • Morone C, Boveri M, Giosuè S, Gotta P, Rossi V, Scapin I, Marzachì C (2007) Epidemiology of “flavescence dorée” in vineyards in Northwestern Italy. Phytopathology 97, 1422–1427.

    Article  CAS  Google Scholar 

  • Murolo S, Romanazzi G (2015) In-vineyard population structure of ‘Candidatus Phytoplasma solani’ using multilocus sequence typing analysis. Infection, Genetics and Evolution 31, 221–230.

    Google Scholar 

  • Musetti R, Marabottini R, Badiani M, Martini M, Sanità Di Toppi L, Borselli S, Borgo M, Osler R (2007) On the role of H2O in the recovery of grapevine (Vitis vinifera cv. Prosecco) from “flavescence dorée” disease. Functional Plant Biology 34, 750–758.

    Google Scholar 

  • Myrie WA (2005) Molecular diagnosis and characterization of phytoplasmas associated with lethal yellowing disease of coconut palms in Jamaica. PhD thesis, The University of the West Indies, Kingston, Jamaica.

    Google Scholar 

  • Myrie WA, Paulraj L, Dollet M, Wray D, Been BO, McLaughlin W (2006) The first report of lethal yellowing in Nevis. Plant Disease 90, 834.

    Google Scholar 

  • Nickel H (2010) First addendum to the leafhoppers and planthoppers of Germany (Hemiptera: Auchenorrhyncha). Cicadina 11, 107–122.

    Google Scholar 

  • Oliveri C, Pacifico D, D’Urso V, La Rosa R, Marzachì C, Tessitori M (2015) “Bois noir” phytoplasma variability in a Mediterranean vineyard system: new plant host and putative vectors. Australasian Plant Pathology 44, 235–244.

    Google Scholar 

  • Osler R, Carraro L, Loi N, Refatti E (1993) Symptom expression and disease occurrence of a yellows disease of grapevine in Northeastern Italy. Plant Disease 77, 496–498.

    Google Scholar 

  • Pajoro M, Marzorati M, Negri I, Sacchi L, Daffonchio D, Alma A (2008) Investigation over the life cycle of St1-c endosymbiont of Scaphoideus titanus. Bulletin of Insectology 6, 217–218.

    Google Scholar 

  • Pavan F (1989) Possibilità di controllo dei potenziali vettori dell’agente della flavescenza dorata. L’Informatore Agrario 45, 55–61.

    Google Scholar 

  • Pavan F, Stefanelli G, Villani A, Mori N, Posenato G, Bressan A, Girolami V (2005) Controllo di FD attraverso la lotta contro il vettore Scaphoideus titanus Ball. Quaderno ARSIA 3, 91–116.

    Google Scholar 

  • Pavan F, Mori N, Bigot G, Zandigiacomo P (2012) Border effect in spatial distribution of “flavescence dorée” affected grapevines and outside source of Scaphoideus titanus vectors. Bulletin of Insectology 65, 281–290.

    Google Scholar 

  • Picciau L, Lavezzaro S, Morando A, Cesano A, Cuttini D, Saladini MA, Alma A (2010) Spollonatura e pulizia sottofi la limitano il legno nero della vite. L’Informatore Agrario 25, 57–59.

    Google Scholar 

  • Pierro R, Passera A, Panattoni A, Casati P, Luvisi A, Rizzo D, Bianco PA, Quaglino F, Materazzi A (2018) Molecular typing of “bois noir” phytoplasma strains in the Chianti Classico area (Tuscany, central Italy) and their association with symptom severity in Vitis vinifera L cv. Sangiovese.Phytopathology 108, 362–373.

    Google Scholar 

  • Quaglino F, Zhao Y, Casati P, Bulgari D, Bianco PA, Wei W, Davis RE (2013) ‘Candidatus Phytoplasma solani’, a novel taxon associated with “stolbur” and “bois noir” related diseases of plants.International Journal of Systematic and Evolutionary Microbiology 63, 2879–2894.

    Google Scholar 

  • Quaglino F, Kube M, Jawhari M, Abou-Jawdah Y, Siewert C, Choueiri E, Sobh H, Casati P, Tedeschi R, Molino Lova M, Alma A, Bianco PA (2015) ‘Candidatus Phytoplasma phoenicium’ associated with almond witches’ broom disease: from draft genome to genetic diversity among strain populations.BMC Microbiology 15, 148.

    Google Scholar 

  • Quaglino F, Murolo S, Zhao Y, Casati P, Durante G, Wei W, Bianco PA, Romanazzi G, Davis RE (2017) Identification of new -J and -K 16SrXII subgroups and distinct single nucleotide polymorphism genetic lineages among ‘Candidatus Phytoplasma solani’ strains associated with “bois noir” in central Italy.Australasian Plant Pathology 46, 31–34.

    Google Scholar 

  • Rigamonti I, Jermini M, Fuog D, Baumgartner J (2011) Towards an improved understanding of the dynamics of vineyard-infesting Scaphoideus titanus leafhopper populations for better timing of management activities. Pest Management Science 67, 1222–1229.

    Google Scholar 

  • Roca De Doyle MM (2001) Crisis research: managing lethal yellowing disease. Biotechnology Development Monitoring 44, 12–16.

    Google Scholar 

  • Romanazzi G, Murolo S (2008) Partial uprooting and pulling to induce recovery in “bois noir” infected grapevines. Journal of Phytopathology 156, 747–750.

    Google Scholar 

  • Romanazzi G, Musetti R, Marzachì C, Casati P (2009) Induction of resistance for the control of phytoplasma diseases. Petria 19, 113–129.

    Google Scholar 

  • Romanazzi G, Murolo S, Feliziani E (2013) A new approach to manage phytoplasma diseases: field treatments with resistance inducers to contain grapevine “bois noir”. Phytopathology 103, 785–791.

    Article  CAS  Google Scholar 

  • Schuiling M, Kaiza DA, Mpunami A, Harris HC (1992) Lethal disease of coconut palm in Tanzania II. History, distribution and epidemiology. Oleagineux 47, 693–697.

    Google Scholar 

  • Stark-Urnau M, Kast WK (2008) Control methods to reduce “bois noir” disease (“stolbur” type I) in grapevine (Vitis vinifera). Gesunde Pflanzen 60, 85–89.

    Article  CAS  Google Scholar 

  • Tawidian P, Jawhari M, Sobh H, Bianco PA, Abou-Jawdah Y (2017) The potential of grafting with selected stone fruit varieties for management of almond witches’ broom. Phytopathologia Mediterranea 56, 458–469.

    Google Scholar 

  • Tedeschi R, Picciau L, Quaglino F, Abou-Jawdah Y, Molino Lova M, Jawhari M, Casati P, Cominetti A, Choueiri E, Abdul-Nour H, Bianco PA, Alma A (2015) A cixiid survey for natural potential vectors of ‘Candidatus Phytoplasma phoenicium’ in Lebanon and preliminary transmission trials. Annals of Applied Biology 166, 372–388.

    Google Scholar 

  • Trivellone V, Jermini M, Posenato G, Mori N (2015) Influence of pruning wood management and suckering on Scaphoideus titanus Ball density in two distinct wine-growing area. IOBC-WPRS Meeting of the Working Group on Integrated Protection and Production in Viticulture, Wien, Austria, 11.

    Google Scholar 

  • Zambon Y, Canel A, Bertaccini A, Contaldo N (2018) Molecular diversity of phytoplasmas associated with grapevine yellows disease in northeastern Italy. Phytopathology 108, 206–214.

    Article  Google Scholar 

  • Zizumbo D, Femández M, Cardeña R (1999) Evaluation of lethal yellowing resistance in coconut germplasm from México. In: Current Advances in Coconut Biotechnology. Eds Oropeza C, Verdeil JL, Ashburner GR, Cardeña R, Santamaria JM. Kluwer Academic Publishers, Boston, United States of America, 131–144 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Mori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bianco, P.A., Romanazzi, G., Mori, N., Myrie, W., Bertaccini, A. (2019). Integrated Management of Phytoplasma Diseases. In: Bertaccini, A., Weintraub, P., Rao, G., Mori, N. (eds) Phytoplasmas: Plant Pathogenic Bacteria - II. Springer, Singapore. https://doi.org/10.1007/978-981-13-2832-9_11

Download citation

Publish with us

Policies and ethics