Skip to main content

Multifunctional Biosensor Logic Gates Based on Graphene Oxide

  • 854 Accesses

Part of the Communications in Computer and Information Science book series (CCIS,volume 951)

Abstract

In this paper, a biological sensing model based on graphene oxide is proposed. A YES gate and a AND gate are constructed by using the ability of graphene oxide to adsorb single strand and quench fluorescence. The biosensor we designed can be used not only as a logical element, but also to detect a specific target DNA. Then, taking YES gate as an example, orthogonal experiments, condition optimization and target selective detection are carried out to demonstrate the practical significance of the sensing model designed. In subsequent experiments, we will design more complex logic components on this basis and try to apply them to practice.

Keywords

  • Graphene oxide
  • Biosensor
  • Logic gate

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wan, F., Dong, C., Yang, J., Dong, Y., et al.: The development and application of DNA computing technology. Bull. Chin. Acad. Sci. 1–7 (2014)

    Google Scholar 

  2. Li, C.H., Xiao, X., Tao, J., et al.: A graphene oxide-based strand displacement amplification platform for ricin detection using aptamer as recognition element. Biosens. Bioelectron. 91, 149–154 (2017)

    CrossRef  Google Scholar 

  3. Mao, Y., Chen, Y., Li, S., et al.: A graphene-based biosensing platform based on regulated release of an aptameric DNA biosensor. Sensors 15(11), 28244–28256 (2015)

    CrossRef  Google Scholar 

  4. Wang, L., Tian, J., Huang, Y., et al.: Homogenous fluorescence polarization assay for the DNA of HIV A T7 by exploiting exonuclease-assisted quadratic recycling amplification and the strong interaction between graphene oxide and ssDNA. Microchim. Acta 183(7), 2147–2153 (2016)

    CrossRef  Google Scholar 

  5. Luo, F., Xi, Q., Jiang, J.H., et al.: Graphene oxide based DNA nanoswitches as a programmable pH-responsive biosensor. Anal. Methods 8(38), 6982–6985 (2016)

    CrossRef  Google Scholar 

  6. Zhou, C., Liu, D., Wu, C., et al.: Integration of DNA and graphene oxide for the construction of various advanced logic circuits. Nanoscale 8(40), 17524–17531 (2016)

    CrossRef  Google Scholar 

  7. Ye, Y.D., Xia, L., Xu, D.D., et al.: DNA-stabilized silver nanoclusters and carbon nanoparticles oxide: a sensitive platform for label-free fluorescence turn-on detection of HIV-DNA sequences. Biosens. Bioelectron. 85, 837–843 (2016)

    CrossRef  Google Scholar 

  8. Chen, C., Li, N., Lan, J., et al.: A label-free colorimetric platform for DNA via target-catalyzed hairpin assembly and the peroxidase-like catalytic of graphene/Au-NPs hybrids. Anal. Chim. Acta 902, 154–159 (2016)

    CrossRef  Google Scholar 

  9. Zhu, J., Zhang, L., Dong, S., et al.: Four-way junction-driven DNA strand displacement and its application in building majority logic circuit. ACS Nano 7(11), 10211–10217 (2013)

    CrossRef  Google Scholar 

  10. Chen, L., Ji, X., He, Z.: Application of new fluorescence technology in virus detection. Chem. Sens. 32(4), 1–8 (2012)

    Google Scholar 

  11. Wu, C., Xu, F., et al.: Application of fluorescence labeling technology in biological and medical research. J. Chongqing Univ. Technol. 28(5), 55–62 (2014)

    Google Scholar 

  12. Xiong, Y., Wei, M., Wei, W., et al.: Detection of DNA damage based on metal-mediated molecular beacon and DNA strands displacement reaction. Spectrochim. Acta A Mol. Biomol. Spectrosc. 118(2), 806–810 (2014)

    CrossRef  Google Scholar 

  13. Zhang, L., Bluhm, A.M., Chen, K.J., et al.: Performance of nano-assembly logic gates with a DNA multi-hairpin motif. Nanoscale 9(4), 1709–1720 (2017)

    CrossRef  Google Scholar 

  14. Li, X., Guo, J., Zhai, Q., et al.: Ultrasensitive electrochemical biosensor for specific detection of DNA based on molecular beacon mediated circular strand displacement polymerization and hyperbranched rolling circle amplification. Anal. Chim. Acta 934, 52–58 (2016)

    CrossRef  Google Scholar 

  15. Adinolfi, B., Pellegrino, M., Giannetti, A., et al.: Molecular beacon-decorated polymethyl-methacrylate core-shell fluorescent nanoparticles for the detection of survivin mRNA in human cancer cells. Biosens. Bioelectron. 88, 15–24 (2016)

    CrossRef  Google Scholar 

  16. Desilva, A.P., Mcclenaghan, N.D.: Molecular-scale logic gates. Cheminform 10(3), 574–586 (2004)

    Google Scholar 

  17. Reif, J.H.: Successes and challenges. Science 296(5567), 478–479 (2002)

    CrossRef  Google Scholar 

  18. Patel, P.D.: (Bio) sensors for measurement of analytes implicated in food safety: a review. Trends Anal. Chem. 21(2), 96–115 (2002)

    CrossRef  MathSciNet  Google Scholar 

  19. Bagni, G., Osella, D., Sturchio, E., et al.: Deoxyribonucleic acid (DNA) biosensors for environmental risk assessment and drug studies. Anal. Chim. Acta 573–574(1), 81 (2006)

    CrossRef  Google Scholar 

  20. Wang, J.: Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens. Bioelectron. 21(10), 1887–1892 (2006)

    CrossRef  Google Scholar 

  21. Bond, J.W.: Value of DNA evidence in detecting crime. J. Forensic Sci. 52(1), 128–136 (2007)

    CrossRef  Google Scholar 

  22. Cheng, N., Zhu, P., Xu, Y., et al.: High-sensitivity assay for Hg (II) and Ag (I) ion detection: a new class of droplet digital PCR logic gates for an intelligent DNA calculator. Biosens. Bioelectron. 84, 1–6 (2016)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yafei Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, L., Zhang, Y., Wei, Y., Dong, Y. (2018). Multifunctional Biosensor Logic Gates Based on Graphene Oxide. In: Qiao, J., et al. Bio-inspired Computing: Theories and Applications. BIC-TA 2018. Communications in Computer and Information Science, vol 951. Springer, Singapore. https://doi.org/10.1007/978-981-13-2826-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2826-8_41

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2825-1

  • Online ISBN: 978-981-13-2826-8

  • eBook Packages: Computer ScienceComputer Science (R0)