Skip to main content

Analysing Parameters Leading to Chaotic Dynamics in a Novel Chaotic System

  • Conference paper
  • First Online:
Bio-inspired Computing: Theories and Applications (BIC-TA 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 951))

  • 855 Accesses

Abstract

A novel chaotic system of three-dimensional mathematic model is proposed in this paper. According to the changes of system parameters and initial values, the dynamical behaviors of the system are investigated in detail by using the classical dynamical analysis methods, such as Lyapunov exponents, bifurcation diagrams etc. Some abundant dynamical phenomena, such as chaos, transient chaos and period-doubling and so on are observed in numerical simulation by Matlab. The simulation results of Matlab can further prove the feasibility and flexibility of this system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leonova, G.A., Kuznetsov, N.V., Korzhemanovaa, N.A., Kusakina, D.V.: Lyapunov dimension formula for the global attractor of the Lorenz system. Commun. Nonlinear Sci. Numer. Simul. 41, 84–103 (2016)

    Article  MathSciNet  Google Scholar 

  2. Luo, R.Z., Zeng, Y.H.: The control and synchronization of fractional-order Genesio-tesi system. Nonlinear Dyn. 88, 1–11 (2017)

    Article  MathSciNet  Google Scholar 

  3. Sun, F.Y., Lü, Z.W.: Stability and spatial chaos in 2D Henon system. Appl. Math. Inf. Sci. 10, 739–746 (2016)

    Article  Google Scholar 

  4. Fedele, G., Alfonso, L.D., Pin, G., Parisini, T.: Volterra’s kernels-based finite-time parameters estimation of the Chua system. IEEE Proc. 318, 121–130 (2018)

    MathSciNet  Google Scholar 

  5. Molaie, M., Jafari, S., Sprott, J.C.: Simple chaotic flows stable equilibrium. Int. J. Bifurcat. Chaos 23, 1350188 (2013)

    Article  MathSciNet  Google Scholar 

  6. Zhou, L., Wang, C.H., Zhang, X., Yao, W.: Various attractors, coexisting attractors and antimonotonicity in a simple fourth-order memristive twin-t oscillator. Int. J. Bifurcat. Chaos 28, 1850050 (2018)

    Article  MathSciNet  Google Scholar 

  7. Bao, B.C., Xu, Q., Bao, H., Chen, M.: Extreme multistability in a memristive circuit. Electron. Lett. 52, 1008–1010 (2016)

    Article  Google Scholar 

  8. Dudkowski, D., et al.: Hidden attractors in dynamical systems. Phys. Rep. 637, 1–50 (2016)

    Article  MathSciNet  Google Scholar 

  9. Bi, Q.S., Ma, R., Zhang, Z.D.: Bifurcation mechanism of the bursting oscillations in periodically excited dynamical system with two time scales. Nonlinear Dyn. 79, 101–110 (2015)

    Article  MathSciNet  Google Scholar 

  10. Ngonghala, C.N., Teboh-Ewungkem, M.I., Ngwa, G.A.: Observance of period-doubling bifurcation and chaos in an autonomous ODE model for malaria with vector demography. Theor. Ecol. 9, 1–15 (2016)

    Article  Google Scholar 

  11. Din, Q., Khan, M.A.: Period-doubling bifurcation and chaos control in a discrete-time mosquito model. Comput. Ecol. Softw. 7, 153–166 (2017)

    Google Scholar 

  12. Nakagawa, S., Saito, T.: An RCOTA hysteresis chaos generator. IEEE Trans. Circ. Syst. I Fundam. Theor. Appl. 43, 1019–1021 (1996)

    Article  Google Scholar 

  13. Sprott, J.C.: Simple chaotic systems and circuits. Am. J. Phys. 68, 758–763 (2000)

    Article  Google Scholar 

  14. Ozoguz, S., Elwakil, A., Kennedy, M.P.: Experimental verification of the butterfly attractor in a modified Lorenz system. Inter. J. Bifurcat. Chaos 12, 1627–1632 (2002)

    Article  Google Scholar 

  15. Elwakil, A., Kennedy, M.: Construction of classes of circuit-independent chaotic oscillators using passive-only nonlinear devices. IEEE Trans. Circ. Syst. I: Fundam. Theor. Appl. 48, 289–307 (2001)

    Article  MathSciNet  Google Scholar 

  16. Yu, S., Lü, J.H., Tang, W.K.S., Chen, G.: A general multi-scroll Lorenz system family and its realization via digital signal processors. Chaos 16, 033126 (2006)

    Article  Google Scholar 

  17. Farajallah, M., Assad, S.E., Deforges, O.: Fast and secure chaos-based cryptosystem for images. Inter. J. Bifurcat. Chaos 26, 1650021-1–1650021-21 (2016)

    Article  Google Scholar 

  18. Assad, S.E.: Chaos based information hiding and security. IEEE Internet Technol. Secur. Trans. Int. Conf. 7196, 67–72 (2016)

    Google Scholar 

  19. Noshadian, S., Ebrahimzade, A., Kazemitabar, S.J.: Optimizing chaos based image encryption. Multimed. Tools Appli. 1, 01–22 (2018)

    Google Scholar 

  20. Zhao, Y., University, A.: Research on text chaos classification technology based on improved SVM. Modern Electron. Tech. 39, 39–43 (2016)

    Google Scholar 

  21. Jafari, S., Pham, V.T., Moghtadaei, M., Kingni, S.T.: The relationship between chaotic maps and some chaotic systems with hidden attractors. Inter. J. Bifurcat. Chaos 26, 527–530 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Wang, Q.X., Yu, S.M., Li, C.Q., Lü, J.H., Fang, X.L., Guyeux, C.: Theoretical design and FPGA-based implementation of higher-dimensional digital chaotic systems. IEEE Trans. Circ. Syst. I Regul. Pap. 63, 401–412 (2016)

    Article  MathSciNet  Google Scholar 

  23. Li, C.B., Sprott, J.C., Xing, H.Y.: Constructing chaotic systems with conditional symmetry. Nonlinear Dyn. 87, 1351–1358 (2017)

    Article  Google Scholar 

  24. Zhang, W.W., Ran-Chao, W.U.: Dual projective synchronization of fractional-order chaotic systems with a linear controller. Appl. Math. Mech. 37, 710–717 (2016)

    Google Scholar 

  25. Wang, Z.L., Ma, J., Cang, S.J., Wang, Z.H., Chen, Z.Q.: Simplified hyper-chaotic systems generating multi-wing non-equilibrium attractors. Optik Int. J. Light Electr. Opt. 127, 2424–2431 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

The work is supported by the State Key Program of National Natural Science of China (Grant No. 61632002), the National Key R D Program of China for International S T Cooperation Projects (No. 2017YFE0103900), the National Natural Science of China (Grant Nos. 61603348, 61775198, 61603347, 61572446, 61472372), Science and Technology Innovation Talents Henan Province (Grant No. 174200510012), Research Program of Henan Province (Grant Nos. 172102210066, 17A120005, 182102210160), Youth Talent Lifting Project of Henan Province and the Science Foundation of for Doctorate Research of Zhengzhou University of Light Industry (Grant No. 2014BSJJ044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfeng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, J., Li, N., Wang, Y. (2018). Analysing Parameters Leading to Chaotic Dynamics in a Novel Chaotic System. In: Qiao, J., et al. Bio-inspired Computing: Theories and Applications. BIC-TA 2018. Communications in Computer and Information Science, vol 951. Springer, Singapore. https://doi.org/10.1007/978-981-13-2826-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2826-8_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2825-1

  • Online ISBN: 978-981-13-2826-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics