Abstract
Many memristor-based neural network arrays that have been proposed in recent years are simultaneously dealt with all of their signal inputs in signal reception status. Therefore, when a relatively small-scale neural network is implemented with this memristive array, some of the inputs which are not used may cause errors in the result due to the impact of an unexpected signal. In this paper, a flexible memristor-based neural network is proposed. Based on this network, the number of synapses used at work can be flexibly configured according to the required size, thereby improving system performance. The memristor-based neural network is simulated in Pspice to implement two different scales, which proves the feasibility and effectiveness of a flexible memristive neural network.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circ. Theory 18(5), 507–519 (1971)
Chua, L.O., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)
Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80 (2008)
Williams, R.S.: How we found the missing memristor. IEEE Spectrum 45(12), 28–35 (2008)
Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010)
Kim, H., Sah, M.P., Yang, C., Roska, T., Chua, L.O.: Neural synaptic weighting with a pulse-based memristor circuit. IEEE Trans. Circ. Syst. I: Regul. Pap. 59(1), 148–158 (2012)
Liu, B., Chen, Y., Wysocki, B., Huang, T.: Reconfigurable neuromorphic computing system with memristor-based synapse design. Neural Process. Lett. 41(2), 159–167 (2015)
Indiveri, G., Linares, B.B., Legenstein, R., Deligeorgis, G., Prodromakis, T.: Integration of nanoscale memristor synapses in neuromorphic computing architectures. Nanotechnology 24(38), 384010 (2013)
Kim, H., Sah, M.P., Yang, C., Roska, T., Chua, L.O.: Memristor bridge synapses. Proc. IEEE 100(6), 2061–2070 (2012)
Sah, M.P., Yang, C., Kim, H., Chua, L.O.: A voltage mode memristor bridge synaptic circuit with memristor emulators. Sensors 12(3), 3587–3604 (2012)
Azghadi, M.R., Linares, B.B., Abbott, D., Leong, P.H.: A hybrid cmos-memristor neuromorphic synapse. IEEE Trans. Biomed. Circ. Syst. 11(2), 434–445 (2017)
Adhikari, S.P., Yang, C., Kim, H., Chua, L.O.: Memristor bridge synapse-based neural network and its learning. IEEE Trans. Neural Netw. Learn. Syst. 23(9), 1426–1435 (2012)
Ebong, I.E., Mazumder, P.: CMOS and memristor-based neural network design for position detection. Proc. IEEE 100(6), 2050–2060 (2012)
Duan, S., Hu, X., Dong, Z., Wang, L., Mazumder, P.: Memristor-based cellular nonlinear/neural network: design, analysis, and applications. IEEE Trans. Neural Netw. Learn. Syst. 26(6), 1202–1213 (2015)
Wang, Z., Wang, X.: A novel memristor-based circuit implementation of full-function Pavlov associative memory accorded with biological feature. IEEE Trans. Circ. Syst. I: Regul. Pap. 65(7), 2210–2220 (2018)
Sheridan, P.M., Cai, F., Du, C., Ma, W., Zhang, Z., Lu, W.D.: Sparse coding with memristor networks. Nat. Nanotechnol. 12(8), 784 (2017)
Wen, S., Huang, T., Zeng, Z., Chen, Y., Li, P.: Circuit design and exponential stabilization of memristive neural networks. Neural Netw. 63, 48–56 (2015)
Yang, J., Wang, L., Wang, Y., Guo, T.: A novel memristive Hopfield neural network with application in associative memory. Neurocomputing 227, 142–148 (2017)
Adam, G.C., Hoskins, B.D., Prezioso, M., Merrikh, B.F., Chakrabarti, B., Strukov, D.B.: 3-D memristor crossbars for analog and neuromorphic computing applications. IEEE Trans. Electron Devices 64(1), 312–318 (2017)
Prezioso, M., Merrikh, B.F., Hoskins, B.D., Adam, G.C., Likharev, K.K., Strukov, D.B.: Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521(7550), 61 (2015)
Hu, S.G., et al.: Associative memory realized by a reconfigurable memristive Hopfield neural network. Nature Commun. 6, 7522 (2015)
Li, C., et al.: Efficient and self-adaptive in-situ learning in multilayer memristor neural networks. Nature Commun. 9(1), 2385 (2018)
Wang, Z., et al.: Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electr. 1(2), 137 (2018)
Wang, J.J., et al.: Predicting house price with a memristor-based artificial neural network. IEEE Access 6, 16523–16528 (2018)
Yao, P., et al.: Face classification using electronic synapses. Nature Commun. 8, 15199 (2017)
Acknowledgments
The work is supported by the State Key Program of National Natural Science of China (Grant No. 61632002), the National Key R&D Program of China for International S&T Cooperation Projects (No. 2017YFE010 3900), the National Natural Science of China (Grant Nos. 61603348, 61775198, 61603347, 61572446, 61472372), Science and Technology Innovation Talents Henan Province (Grant No. 174200510012), Research Program of Henan Province (Grant Nos. 172102210066, 17A120005, 182102210160), Youth Talent Lifting Project of Henan Province and the Science Foundation of for Doctorate Research of Zhengzhou University of Light Industry (Grant No. 2014BSJJ044).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Sun, J., Han, G., Wang, Y. (2018). A Flexible Memristor-Based Neural Network. In: Qiao, J., et al. Bio-inspired Computing: Theories and Applications. BIC-TA 2018. Communications in Computer and Information Science, vol 951. Springer, Singapore. https://doi.org/10.1007/978-981-13-2826-8_23
Download citation
DOI: https://doi.org/10.1007/978-981-13-2826-8_23
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-2825-1
Online ISBN: 978-981-13-2826-8
eBook Packages: Computer ScienceComputer Science (R0)