Skip to main content

Phytoremediation: An Alternative Tool Towards Clean and Green Environment

  • Chapter
  • First Online:
Sustainable Green Technologies for Environmental Management

Abstract

Wetlands being the most productive and ecologically sensitive and adaptive ecosystems are constantly being challenged with anthropogenic pressures due to their wide variety of services they provide to mankind. The vast expansions of human population and associated activities have put a tremendous amount of pressure on these naturally occurring resources. Uncontrolled discharge of effluents in water from various sources resulted into altered nature of the associated ecosystems giving rise to several health issues and problems. Hence, realising the urgent need of protecting these ecologically fragile ecosystems several adaptive measures have been taken. In this connection, it is found that the available conventional methods are not feasible on various grounds like their cost, their by-products, time frame, etc. Therefore, the use of plants emerged as the alternative and promising tool for safe and sustainable ecosystem supporting life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelmalik, W. E. Y., El-Shinawy, R. M. K., Ishak, M. M., & Mahmoud, K. A. (1980). Uptake of radionuclides by some aquatic macrophytes of Ismailia Canal, Egypt. Hydrobiology, 69, 3.

    Article  Google Scholar 

  • Afrous, A., Manshouri, M., Liaghat, A., Pazira, E., & Sedghi, H. (2011). Mercury and arsenic accumulation by three species of aquatic plants in Dezful, Iran. African Journal of Agricultural Research, 6(24), 5391–5397.

    Google Scholar 

  • Ansede, J., Pellechia, P., & Yoch, D. (1999). Selenium biotransformation by the salt marsh cordgrass Spartina alterniflora: Evidence for dimethylselenoniopropionate formation. Environmental Science & Technology, 33, 2064–2069. https://doi.org/10.1021/es9812296.

    Article  CAS  Google Scholar 

  • Baker, A. J. M., & Brooks, R. R. (1989). Terrestrial higher plants which hyperaccumulate heavy elements: A review of their distribution, ecology and phytochemistry. Biorecovery, 1, 81–126.

    CAS  Google Scholar 

  • Barber, J. T., Sharma, H. A., & Ensley, H. E. (1995). Detoxifi cation of phenol by the aquatic angiosperm, Lemna gibba. Chemosphere, 31, 3567.

    Article  CAS  Google Scholar 

  • Barceló, J., & Poschenrieder, C. (2003). Phytoremediation: Principles and perspectives. Contributions to Science, 2(3), 333–344.

    Google Scholar 

  • Best, E. P. H., Zappi, M. E., Fredrickson, H. L., Sprecher, S. L., Larson, S. L., & Ochman, M. (1997). Screening of aquatic and wetland plant species for phytoremediation of explosives-contaminated groundwater from the Iowa army ammunition plant. Annals of the New York Academy of Sciences, 829, 179.

    Article  CAS  Google Scholar 

  • Best, E. P., Sprecher, S. L., Larson, S. L., Fredrickson, H. L., & Bader, D. F. (1999a). Environmental behavior of explosives in groundwater from the Milan army ammunition plant in aquatic and wetland plant treatments. Removal, mass balances and fate in groundwater of TNT and RDX. Chemosphere, 38(14), 3383–3396.

    Article  CAS  Google Scholar 

  • Best, E. P. H., Sprecher, S. L., Larson, S. L., Fredrickson, H. L., & Bader, D. F. (1999b). Environmental behavior of explosives in groundwater from the Milan army ammunition plant in aquatic and wetland plant treatments. Uptake and fate of TNT and RDX in plants. Chemosphere, 39, 2057.

    Article  CAS  Google Scholar 

  • Bhadra, R., Spanggord, R. J., Wayment, D. G., Hughes, J. B., & Shanks, J. V. (1999). Characterization of oxidation products of TNT metabolism in aquatic phytoremediation systems of Myriophyllum aquaticum. Environmental Science & Technology, 33, 3354.

    Article  CAS  Google Scholar 

  • Bhadra, R., Wayment, D. G., Williams, R. K., Barman, S. N., Stone, M. B., Hughes, J. B., & Shanks, J. V. (2001). Studies on plant-mediated fate of the explosives RDX and HMX. Chemosphere, 44, 1259.

    Article  CAS  Google Scholar 

  • Bolong, N., Ismail, A., Salim, M., & Matsuura, T. (2009). A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination, 239, 229–246. https://doi.org/10.1016/j.desal.2008.03.020.

    Article  CAS  Google Scholar 

  • Bolsunovski˘, A. I., Ermakov, A. I., Burger, M., Degermendzhi, A. G., & Sobolev, A. I. (2002). Accumulation of industrial radionuclides by the Yenisei River aquatic plants in the area affected by the activity of the mining and chemical plant. Radiatsionnaia Biologiia Radioecologiia, 42, 194.

    Google Scholar 

  • Bolsunovsky, A., Zotina, T., & Bondareva, L. (2005). Accumulation and release of 241Am by a macrophyte of the Yenisei River (Elodea canadensis). Journal of Environmental Radioactivity, 81, 33.

    Article  CAS  Google Scholar 

  • Brooks, R. R. (1998). Geobotany and hyperaccumulators. In R. R. Brooks (Ed.), Plants that hyperaccumulate heavy metals (pp. 55–94). Wallingford: CAB International.

    Google Scholar 

  • Burken, J. G., & Schnoor, J. L. (1997). Uptake and metabolism of atrazine by poplar trees. Environmental Science & Technology, 31, 1399–1406.

    Article  CAS  Google Scholar 

  • Campos, M., Merino, I., Casado, R., Pacios, L. F., & Gómez, L. (2008). Review. Phytoremediation of organic pollutants. Spanish Journal of Agricultural Research, 6(Special issue), 38–47.

    Article  Google Scholar 

  • Carbonell, A. A., Aarabi, M. A., Delaune, R. D., Gambrell, R. P., & Patrick, W. H., Jr. (1998). Arsenic in wetland vegetation: Availability, phytotoxicity, uptake and effects on plant growth and nutrition. Science of the Total Environment, 217, 189.

    Article  CAS  Google Scholar 

  • Carvalho, F. P. (2006). Agriculture, pesticides, food security and food safety. Environmental Science & Policy, 9, 685–692.

    Article  Google Scholar 

  • Chaney, R. L. (1988). Metal speciation and interactions among elements affect trace element transfer in agricultural and environmental food-chains. In J. R. Kramer & H. E. Allen (Eds.), Metal speciation: Theory, analysis and applications (pp. 219–260). Chelsea: Lewis Publishers.

    Google Scholar 

  • Chatterjee, S., Chetia, M., Singh, L., Chattopadhyay, B., Datta, S., & Mukhopadhyay, S. K. (2011). A study on the phytoaccumulation of waste elements in wetland plants of a Ramsar site in India. Environmental Monitoring and Assessment, 178, 361–371.

    Article  CAS  Google Scholar 

  • Cunningham, S. D., & Ow, D. W. (1996). Promises and prospects of phytoremediation. Plant Physiology, 110, 715–719.

    Article  CAS  Google Scholar 

  • Day, J. A., & Saunders, F. M. (2004). Glycoside formation from chlorophenols in Lemna minor. Environmental Toxicology and Chemistry, 25, 613.

    Article  Google Scholar 

  • Dhir, B. (2013). Phytoremediation: Role of aquatic plants in environmental clean-up. New Delhi: Springer.

    Book  Google Scholar 

  • Donnelly, P. K., Hedge, R. S., & Fletcher, J. S. (1994). Growth of PCB-degrading bacteria on compounds from photosynthetic plants. Chemosphere, 128, 984–988.

    Google Scholar 

  • Dushenkov, V., Kumar, P. B. A. N., Motto, H., & Raskin, I. (1995). Rhizofiltration: The use of plants to remove heavy metals from aqueous streams. Environmental Science & Technology, 29, 1239–1245.

    Article  CAS  Google Scholar 

  • Dushenkov, S., Vasudev, D., Kapulnik, Y., Gleba, D., Fleisher, D., Ting, K. C., & Ensley, B. (1997a). Removal of uranium from water using terrestrial plants. Environmental Science & Technology, 31, 3468–3474.

    Article  CAS  Google Scholar 

  • Dushenkov, S., Vasudev, D., Kapulnik, Y., Gleba, D., Fleisher, D., Ting, K. C., & Ensley, B. (1997b). Phytoremediation: A novel approach to an old problem. In D. L. Wise (Ed.), Global environmental biotechnology (pp. 563–572). Amsterdam: Elsevier Science B.V.

    Google Scholar 

  • El-Shinawy, R. M. K., & Abdel-Malik, W. E. Y. (1980). Retention of radionuclides by some aquatic fresh water plants. Hydrobiology, 69, 125.

    Article  CAS  Google Scholar 

  • Ensley, H. E., Barber, J. T., Polita, M. A., & Oliver, A. I. (1994). Toxicity and metabolism of 2, 4-dichlorophenol by aquatic angiosperm Lemna gibba. Environmental Toxicology and Chemistry, 13, 325.

    Article  CAS  Google Scholar 

  • Erakhrumen, A. (2007). Phytoremediation: An environmentally sound technology for pollution prevention, control and remediation in developing countries. Educational Research Review, 2(7), 151–156.

    Google Scholar 

  • Fernandez, R. T., Whitwell, T., Riley, M. B., & Bernard, C. R. (1999). Evaluating semiaquatic herbaceous perennials for use in herbicide phytoremediation. Journal of the American Society for Horticultural Science, 124, 539.

    Article  CAS  Google Scholar 

  • Gao, J., Garrison, A. W., Mazur, C. S., Wolfe, N. L., & Hoehamer, C. F. (2000a). Uptake and phytotransformation of o, p′-DDT and p, p′-DDT by axenically cultivated aquatic plants. Journal of Agricultural and Food Chemistry, 48(12), 6121–6127.

    Article  CAS  Google Scholar 

  • Gao, J., Garrison, A. W., Hoehamen, C., Mazur, C. S., & Wolfe, N. L. (2000b). Uptake and phytotransformation of organophosphorus pesticide by axenically cultivated aquatic plants. Journal of Agricultural and Food Chemistry, 48, 6114.

    Article  CAS  Google Scholar 

  • Garrison, A. W., Nzengung, V. A., Avants, J. K., Ellington, J. J., Jones, W. J., Rennels, D., & Wolfe, N. L. (2000). Phytodegradation of p, p′-DDT and the enantiomers of o,p′-DDT. Environmental Science & Technology, 34, 1663.

    Article  CAS  Google Scholar 

  • Gilbert, E. S., & Crowley, D. E. (1997). Plant compounds that induce polychlorinated biphenyl biodegradation by Arthrobacter sp. strain B1B. Applied and Environmental Microbiology, 63, 1933–1938.

    CAS  Google Scholar 

  • Gobas, E. A. P. C., McNeil, E. J., Lovett-Doust, L., & Haffner, G. D. (1991). Bioconcentration of chlorinated aromatic hydrocarbons in aquatic macrophytes. Environmental Science & Technology, 25, 924.

    Article  CAS  Google Scholar 

  • Hafez, N., Abdalla, S., & Ramadan, Y. (1998). Accumulation of phenol by Potamogeton crispus from aqueous industrial waste. Bulletin of Environmental Contamination and Toxicology, 60, 944–948. https://doi.org/10.1007/s001289900719.

    Article  CAS  Google Scholar 

  • Hattink, J., & Wolterbeek, H. T. (2001). Accumulation of 99 Tc in duckweed Lemna minor L. as a function of growth rate and 99 Tc concentration. Journal of Environmental Radioactivity, 57, 117–138.

    Article  CAS  Google Scholar 

  • Hattink, J., De Goeij, J. J. M., & Wolterbeek, H. T. (2000). Uptake kinetics of 99 Tc in common duckweed. Environmental and Experimental Botany, 44, 9–13.

    Article  CAS  Google Scholar 

  • Henry, J. R. (2000). An overview of phytoremediation of lead and mercury. NNEMS Report, Washington D.C, pp. 3–9. http://www.bvsde.paho.org/bvsarp/i/fulltext/over/over.pdf

  • Hughes, J. B., Shanks, J. E., Vanderford, M. Y., Lauritzen, J., & Bhadra, R. (1997). Transformation of TNT by aquatic plants and plant tissue cultures. Environmental Science & Technology, 31, 266–271.

    Article  CAS  Google Scholar 

  • Kara, Y. (2010). Bioaccumulation of nickel by aquatic macrophytes. Desalination and Water Treatment, 19, 325–328.

    Article  CAS  Google Scholar 

  • Knuteson, S. L., Whitwell, T., & Klaine, S. J. (2002). Influence of plant age and size on simazine uptake and toxicity. Journal of Environmental Quality, 31, 2090.

    Article  Google Scholar 

  • Kolpin, D., Furlong, E., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., & Buxton, H. T. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: A national reconnaissance. Environmental Science & Technology, 36, 1202–1211.

    Article  CAS  Google Scholar 

  • Kondo, K., Kawabata, H., Ueda, S., Hasegawa, H., Inaba, J., Mitamura, O., Seike, Y., & Ohmomo, Y. (2003). Distribution of aquatic plants and absorption of radionuclides by plants through the leaf surface in brackish Lake Obuchi, Japan, bordered by nuclear fuel cycle facilities. Journal of Radioanalytical and Nuclear Chemistry, 257, 305.

    Article  CAS  Google Scholar 

  • Kumar, M. D., Panda, R., Niranjan, V., & Bassi, N. (2013). Technology choices and institutions for improving economic and livelihood benefits from multiple uses tanks in western Orissa. In M. D. Kumar, M. V. K. Sivamohan, & N. Bassi (Eds.), Water management, food security and sustainable agriculture in developing economies. Oxford: Routledge.

    Google Scholar 

  • Larsen, J. C. (2006). Risk assessments of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and dioxin-like polychlorinated biphenyls in food. Molecular Nutrition & Food Research, 50, 885–896.

    Article  CAS  Google Scholar 

  • Lesage, E., Mundia, C., Rousseau, D. P. L., Van de Moortel, A. M. K., Laing, G. D., Tack, F. M. G., De Pauw, N., & Verloo, M. G. (2008). Removal of heavy metals from industrial effluents by the submerged aquatic plant Myriophyllum spicatum L. In J. Vyamazal (Ed.), Wastewater treatment, plant dynamics and management in constructed and natural wetlands (pp. 211–221). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Lin, A. Y., Yu, T., & Lin, C. (2008). Pharmaceutical contamination in residential, industrial, and agricultural waste streams: Risk to aqueous environments in Taiwan. Chemosphere, 74, 131–141.

    Article  CAS  Google Scholar 

  • Machate, T., Noll, H., Behrens, H., & Kettrup, A. (1997). Degradation of phenanthracene and hydraulic characteristics in constructed wetland. Water Research, 31, 554.

    Article  CAS  Google Scholar 

  • Manahan, S. (1994). Environmental chemistry (6th ed.p. 811). New York: Lewis Publishers.

    Google Scholar 

  • Mander, Ãœ., & Mitsch, W. (2009). Pollution control by wetlands. Ecological Engineering, 35, 153–158. https://doi.org/10.1016/j.ecoleng.2008.10.005.

    Article  Google Scholar 

  • Manios, T., Stentiford, E. I., & Millner, P. (2003). Removal of heavy metals from a metaliferous water solution by Typha latifolia plants and sewage sludge compost. Chemosphere, 53, 487–494.

    Article  CAS  Google Scholar 

  • Mazumdar, K., & Das, S. (2014). Phytoremediation of Pb, Zn, Fe, and Mg with 25 wetland plant species from a paper mill contaminated site in north East India. Environmental Science and Pollution Research, 22, 701–710. https://doi.org/10.1007/s11356-014-3377-7.

    Article  CAS  Google Scholar 

  • Molisani, M. M., Rocha, R., Machado, W., Barreto, R. C., & Lacerda, I. D. (2006). Mercury contents in aquatic macrophytes from two reservoirs in the para’ıba do sul: Guandu river system, Se, Brazil. Brazilian Journal of Biology, 66, 101.

    Article  CAS  Google Scholar 

  • Nguyen, T. T. T., Davy, F. B., Rimmer, M., & De Silva, S. (2009). Use and exchange of genetic resources of emerging species for aquaculture and other purposes. FAO/ NACA expert meeting on the use and exchange of aquatic genetic resources relevant for food and agriculture, 31 March–02 April 2009, Chonburi, Thailand.

    Article  Google Scholar 

  • Nwoko, C. O. (2010). Trends in phytoremediation of toxic elemental and organic pollutants. African Journal of Biotechnology, 9(37), 6010–6016.

    CAS  Google Scholar 

  • Nzengung, V. A., Lee, N. W., Rennels, D. E., McCutcheon, S. C., & Wang, C. (1999). Use of aquatic plants and algae for decontamination of waters polluted with chlorinated alkanes. International Journal of Phytoremediation, 1, 203.

    Article  CAS  Google Scholar 

  • Osmolovskaya, N., & Kurilenko, V. (2005). Macrophytes in phytoremediation of heavy metal contaminated water and sediments in urban inland ponds. Geophysical Research Abstracts, 7, 10510.

    Google Scholar 

  • Panich-Pat, T., Srinives, P., Kruatrachue, M., Pokethitiyook, P., Upathamd, S., & Lanzae, G. R. (2005). Electron microscopic studies on localization of lead in organs of Typha angustifolia grown on contaminated soil. Science Asia, 31, 49–53.

    Article  CAS  Google Scholar 

  • Pavlostathis, S. G., Comstock, K. K., Jacobson, M. E., & Saunders, F. M. (1998). Transformation of 2,4,6-trinitrotoluene by the aquatic plant Myriophyllum aquaticum. Environmental Toxicology and Chemistry, 17, 2266.

    Article  CAS  Google Scholar 

  • Petrović, M., Gonzalez, S., & Barceló, D. (2003). Analysis and removal of emerging contaminants in wastewater and drinking water. Trends in Analytical Chemistry, 22, 685–696.

    Article  CAS  Google Scholar 

  • Pilon-Smits, E., & Freeman, J. (2006). Environmental cleanup using plants: Biotechnological advances and ecological considerations. Frontiers in Ecology and the Environment, 4, 203–210. https://doi.org/10.1890/1540-9295(2006)004[0203:ecupba]2.0.co;2.

    Article  Google Scholar 

  • Popa, K., Cecal, A., Humelnicu, D., Caraus, I., & Draghici, C. L. (2004). Removal of 60 Co2+ and 137 Cs+ ions from low radioactive solutions using Azolla caroliniana wild. Water fern. Central European Journal of Chemistry, 2, 434.

    CAS  Google Scholar 

  • Popa, K., Palamaru, M. N., Iordan, A. R., Humelnicu, D., Drochioiu, G., & Cecal, A. (2006). Laboratory analyses of 60Co2+, 65Zn2+ and (55+59)Fe3+ radioactions uptake by Lemna minor. Isotopes in Environmental and Health Studies, 42, 87.

    Article  CAS  Google Scholar 

  • Prasad, M. N. V. (2004). Phytoremediation of metals in the environment for sustainable development. Proceedings of the Indian National Science Academy, 70, 71–98.

    CAS  Google Scholar 

  • Qian, J. H., Zayed, A., Zhu, M. L., Yu, M., & Terry, N. (1999). Phytoaccumulation of trace elements by wetland plants, III: Uptake and accumulation of ten trace elements by twelve plant species. Journal of Environmental Quality, 28, 1448.

    Article  CAS  Google Scholar 

  • Rai, P. (2008). Technical note: Phytoremediation of hg and cd from industrial effluents using an aquatic free floating Macrophyte Azolla Pinnata. International Journal of Phytoremediation, 10, 430–439. https://doi.org/10.1080/15226510802100606.

    Article  CAS  Google Scholar 

  • Rai, U. N., Tripathi, R. D., Vajpayee, P., Pandey, N., Ali, M. B., & Gupta, D. K. (2003). Cadmium accumulation and its phytotoxicity in Potamogeton pectinatus (Potamogetonaceae). Bulletin of Environmental Contamination and Toxicology, 70, 566.

    Article  CAS  Google Scholar 

  • Reeves, R. D., & Brooks, R. R. (1983). Hyperaccumulation of lead and zinc by two metallophytes from a mining area of Central Europe. Environmental Pollution Series A, 31, 277–287.

    Article  CAS  Google Scholar 

  • Rice, P. J., Anderson, T. A., & Coats, J. R. (1997). Phytoremediation of herbicide-contaminated surface water with aquatic plants. In E. L. Kruger, T. A. Anderson, & J. R. Coats (Eds.), Phytoremediation of soil and water contaminants. Washington, DC: American Chemical Society.

    Google Scholar 

  • Rivera, R., Medina, V. F., Larson, S. L., & McCutcheon, S. C. (1998). Phytotreatment of TNT-contaminated groundwater. Journal of Soil Contamination, 7, 511.

    Article  CAS  Google Scholar 

  • Roy, S., & Hanninen, O. (1994). Pentachlorophenol: Uptake/ elimination, kinetics and metabolism in an aquatic plant, Eichhornia crassipes. Environmental Toxicology and Chemistry, 13, 763.

    Article  CAS  Google Scholar 

  • Russi, D., ten Brink, P., Farmer, A., Badura, T., Coates, D., Förster, J., Kumar, R., & Davidson, N. (2013). The economics of ecosystems and biodiversity for water and wetlands. London, Brussels/Gland: IEEP/Ramsar Secretariat.

    Google Scholar 

  • Sadowsky, M. J. (1999). Phytoremediation: past promises and future practices. In Proceedings of the 8th international symposium on microbial ecology, Halifax, pp. 1–7.

    Google Scholar 

  • Salt, D. E., Blaylock, M., Kumar, P. B. A. N., Dushenkov, V., Ensley, B. D., Chet, I., & Raskin, I. (1995). Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology, 13, 468–475.

    CAS  Google Scholar 

  • Saygideger, S., Dogan, M., & Keser, G. (2004). Effect of lead and pH on lead uptake, chlorophyll and nitrogen content of Typha latifolia L. and Ceratophyllum demersum L. International Journal of Agriculture and Biology, 6, 168–172.

    CAS  Google Scholar 

  • Schnoor, J. L., Licht, L. A., McCutcheon, S. C., Wolfe, N. L., & Carreira, L. H. (1995). Phytoremediation of organic and nutrient contaminants. Journal of Environmental Science and Technology, 29, 318A–323A.

    Article  CAS  Google Scholar 

  • Sharma, H. A., Barber, J. T., Ensley, H. E., & Polito, M. A. (1997). Chlorinated phenols and phenols by Lemna gibba. Environmental Toxicology and Chemistry, 16, 346.

    Article  CAS  Google Scholar 

  • Shokod’Ko, T. I., Drobot, P. I., Kuzmenko, M. I., & Shklyar, A. Y. (1992). Peculiarities of radionuclides accumulation by higher aquatic plants. Hydrobiological Journal, 28, 92.

    Google Scholar 

  • Singh, N. K., Pandey, G. C., Rai, U. N., Tripathi, R. D., Singh, H. B., & Gupta, D. K. (2005). Metal accumulation and ecophysiological effects of distillery effluent on Potamogeton pectinatus L. Bulletin of Environmental Contamination and Toxicology, 74, 857.

    Article  CAS  Google Scholar 

  • Singh, D., Gupta, R., & Tiwari, A. (2011). Phytoremediation of lead from wastewater using aquatic plants. International Journal of Biomedical Research. https://doi.org/10.7439/ijbr.v2i7.124.

  • Sivaci, E. K., Sivaci, A., & Sokman, M. (2004). Biosorption of cadmium by Myriophyllum spicatum and Myriophyllum triphyllum orchard. Chemosphere, 56, 1043.

    Article  CAS  Google Scholar 

  • Srivastava, S., Mishra, S., Dwivedi, S., & Tripathi, R. (2010). Role of thiol metabolism in arsenic detoxification in Hydrilla verticillata(L.f.) Royle. Water, Air, and Soil Pollution, 212, 155–165.

    Article  CAS  Google Scholar 

  • Srivastava, S., Srivastava, M., Suprasanna, S., & D’Souza, F. (2011). Phytofiltration of arsenic from simulated contaminated water using Hydrilla verticillata in field conditions. Ecological Engineering, 37, 1937–1941.

    Article  Google Scholar 

  • Stuart, M. E., Manamsa, K., Talbot, J. C., & Crane, E. J. (2011). Emerging contaminants in g groundwater. Groundwater science programme open report OR/11/013. British Geological Survey.

    Google Scholar 

  • Thompson, P. L., Ramer, L. A., & Schnoor, J. L. (1998). Uptake and transformation of TNT by hybrid poplar trees. Environmental Science & Technology, 32, 975–980.

    Article  CAS  Google Scholar 

  • Tripathi, R. D., Rai, U. N., Vajpayee, M. B., Ali, M. B., Khan, E., Gupta, D. K., Mishra, S., Shukla, M. K., & Singh, S. N. (2003). Biochemical responses of Potamogeton pectinatus L. exposed to higher concentration of zinc. Bulletin of Environmental Contamination and Toxicology, 71, 255.

    Article  CAS  Google Scholar 

  • Tront, A. M., & Saunders, F. M. (2006). Role of plant activity and contaminant speciation in aquatic plant assimilation of 2,4,5-trichlorophenol. Chemosphere, 64(3), 400–407.

    Article  CAS  Google Scholar 

  • Tront, J. M., Day, J. A., & Saunders, M. F. (2001). Trichlorophenol removal with Lemna minor. In: Proceedings of the water environment federation (Vol. 40, p. 929). San Diego: WEFTEC.

    Article  Google Scholar 

  • Tront, J. M., Reinhold, D. M., Bragg, A. W., & Saunders, F. M. (2007). Uptake of halogenated phenols by aquatic plants. Journal of Environmental Engineering, 133, 955.

    Article  CAS  Google Scholar 

  • Vangronsveld, J., Herzig, R., Weyens, N., et al. (2009). Phytoremediation of contaminated soils and groundwater: Lessons from the field. Environmental Science and Pollution Research, 16, 765–794. https://doi.org/10.1007/s11356-009-0213-6.

    Article  CAS  Google Scholar 

  • Wang, T. C., Weissman, J. C., Ramesh, G., Varadarajan, R., & Benemann, J. R. (1996). Parameters for removal of toxic heavy metals by water Milfoil (Myriophyllum spicatum). Bulletin of Environmental Contamination and Toxicology, 57, 779–786.

    Article  CAS  Google Scholar 

  • Wani, S. H., Sanghera, G. S., Athokpam, H., Nongmaithem, J., Nongthongbam, R., Naorem, B. S., & Athokpam, H. S. (2012). Phytoremediation: Curing soil problems with crops. African Journal of Agricultural Research, 7(28), 3991–4002.

    Google Scholar 

  • Weltje, L., Brouwer, A. H., Verburg, T. G., Wolterbeek, H. T., & de Goeij, J. J. M. (2002). Accumulation and elimination of lanthanum by duckweed (Lemna minor L.) as influenced by organism growth and lanthanum sorption to glass. Environmental Toxicology and Chemistry, 21, 1483–1489.

    Article  CAS  Google Scholar 

  • Windham, L., Weis, J. S., & Weis, P. (2001). Lead uptake, distribution and effects in two dominant salt marsh macrophytes Spartina alterniflora (cordgrass) and Phragmites australis (common reed). Marine Pollution Bulletin, 42, 811.

    Article  CAS  Google Scholar 

  • Windham, L., Weis, J. S., & Weis, P. (2003). Uptake and distribution of metals in two dominant salt marsh macrophytes, Spartina alterniflora (cordgrass) and Phragmites australis (common reed). Estuarine, Coastal and Shelf Science, 56, 63.

    Article  CAS  Google Scholar 

  • Wolf, S. D., Lassiter, R. R., & Wooten, S. E. (1991). Predicting chemical accumulation in shoots of aquatic plants. Environmental Toxicology and Chemistry, 10, 655.

    Article  Google Scholar 

  • Xia, J., Wu, L., & Tao, Q. (2002a). Phytoremediation of methyl parathion by water hyacinth(Eichhornia crassipes Solm.). Chemical Abstracts, 137, 155879.

    Google Scholar 

  • Xia, J., Wu, L., & Tao, Q. (2002b). Phytoremediation of some pesticides by water hyacinth (Eichhornia crassipes Solm.). Chemical Abstracts, 138, 390447.

    Google Scholar 

  • Xue, P., Yan, C., Sun, G., & Luo, Z. (2012). Arsenic accumulation and speciation in the submerged macrophyte Ceratophyllum demersum L. Environmental Science and Pollution Research International, 19, 3969–3976.

    Article  CAS  Google Scholar 

  • Ye, Z. H., Baker, A. J. M., Wong, M. H., & Willis, A. J. (1997). Zinc, lead and cadmium tolerance, uptake and accumulation by Typha latifolia. The New Phytologist, 136, 469.

    Article  CAS  Google Scholar 

  • Zayed, A., Pilon-Smits, E., de Souza, M., Lin, Z. Q., & Terry, N. (2000). Remediation of selenium polluted soils and waters by phytovolatilization. In N. Terry & G. Barnuelos (Eds.), Phytoremediation of contaminated soil and water (p. 61). Boca Raton: Lewis.

    Google Scholar 

Download references

Acknowledgements

Authors are grateful to the directors of respective institutes for extending the facilities and encouragement for the compilation of this paper. Google website is duly acknowledged for the pictures and other information. Misra S. acknowledge SERB- DST sponsored DST Fast Track Project YSS/2015/001193 for the necessary logistic supports available under this project.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Misra, S., Misra, K.G. (2019). Phytoremediation: An Alternative Tool Towards Clean and Green Environment. In: Shah, S., Venkatramanan, V., Prasad, R. (eds) Sustainable Green Technologies for Environmental Management. Springer, Singapore. https://doi.org/10.1007/978-981-13-2772-8_5

Download citation

Publish with us

Policies and ethics