Skip to main content

Management of Heavy Metal Polluted Soils: Perspective of Arbuscular Mycorrhizal Fungi

  • Chapter
  • First Online:
Sustainable Green Technologies for Environmental Management

Abstract

In recent years, intensive research have been initiated on remediation of metal polluted soil due to the public concerns on ecosystem deterioration. Plants are used as an effective tool in remediation of metal polluted soil. In natural ecosystem, plants are associated with soil microorganisms which plays an important role in enhancing plant growth in metal contaminated site and phytoremediation process. Among the microorganisms, arbuscular mycorrhizal fungi (AMF) contributes markedly in the phytoremediation process in metal contaminated site by enhancing plant stress tolerance and metal extraction from soil (phytoextraction) and immobilization of metals in soil (phytostabilization). This chapter deals with our study on the effect of heavy metal on AMF root colonization and diversity in heavy metal and metalloid contaminated sites. In addition, this chapter summarizes the mechanisms involved in AMF mediated phytoremediation of metal polluted soil. Potential prospects lies in revealing the mechanisms behind the tripartite interaction among plant species, AMF species and heavy metals for effective management of polluted soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, M. F., Swenson, W., Querejeta, J. I., Egerton-Warburton, L. M., & Treseder, K. K. (2003). Ecology of mycorrhizae: A conceptual framework for complex interactions among plants and fungi. Annual Review of Phytopathology, 41, 271–303.

    Article  CAS  Google Scholar 

  • Audet, P., & Charest, C. (2007). Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: Meta-analytical and conceptual perspectives. Environmental Pollution, 147, 609–614.

    Article  CAS  Google Scholar 

  • Barceló, J., & Poschenrieder, C. (2003). Phytoremediation: principles and perspectives. Contributions to Science, 2. Institut d’Estudis Catalans, Barcelona, pp. 333–344.

    Google Scholar 

  • Budel, B., Weber, B., Kuhl, M., Pfanz, H., Sultemeyer, D., & Wessels, D. (2004). Reshaping of sandstone surfaces by cryptoendolithic cyanobacteria: Bioalkalization causes chemical weathering in arid landscapes. Geobiology, 2, 261–268.

    Article  Google Scholar 

  • Chen, B., Xiao, X., Zhu, Y. G., Smith, F. A., Xie, Z. M., & Smith, S. E. (2007). The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. Science of the Total Environment, 379, 226–234.

    Article  CAS  Google Scholar 

  • Cornejo, P., Meier, S., Borie, G., Rilig, M. C., & Borie, F. (2008). Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to cu and Zn sequestration. Science of the Total Environment, 406, 154–160.

    Article  CAS  Google Scholar 

  • Deng, H., Ye, Z. H., & Wong, M. H. (2004). Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environmental Pollution, 132, 29–40.

    Article  CAS  Google Scholar 

  • Ferrol, N., Tamayo, E., & Vargas, P. (2016). The heavy metal paradox in arbuscular mycorrhizas: From mechanisms to biotechnological applications. Journal of Experimental Botany, 67, 6253–6265.

    Article  CAS  Google Scholar 

  • Frank, A. B. (1885). Uber di auf werzelsymbiose beruhende Ernahrung gewisser Baume durch unterirdischeplize. Berichte der Deutschen Botanischen Gesellschaft, 3, 128–145.

    Google Scholar 

  • Garg, N., & Aggarwal, N. (2011). Effect of mycorrhizal inoculations on heavy metal uptake and stress alleviation of Cajanus cajan (L.) Mill sp. genotypes grown in cadmium and lead contaminated soils. Plant Growth Regulation, 66, 9–26.

    Article  Google Scholar 

  • Gaur, A., & Adholeya, A. (2004). Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Current Science, 86, 528–534.

    CAS  Google Scholar 

  • Gillespie, A. W., Farrell, R. E., Walley, F. L., Ross, A. R., Leinweber, P., Eckhardt, K.-U., Regierd, T. Z., & Blyth, R. R. (2011). Glomalin-related soil protein contains non-mycorrhizal-related heat-stable proteins, lipids and humic materials. Soil Biology and Biochemistry, 43, 766–777.

    Article  CAS  Google Scholar 

  • Gohre, V., & Paszkowski, U. (2006). Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta, 223, 1115–1122.

    Article  Google Scholar 

  • Gonzalez-Chavez, M. C., Carrillo-Gonzalez, R., Wright, S. F., & Nichols, K. A. (2004). The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environmental Pollution, 130, 317–323.

    Article  CAS  Google Scholar 

  • Gonzalez-Chavez, M. C., Carrillo-Gonzalez, R., & Gutierrez- Castorena, M. C. (2009). Natural attenuation in a slag heap contaminated with cadmium: The role of plants and arbuscular mycorrhizal fungi. Journal of Hazardous Materials, 161, 1288–1298.

    Article  CAS  Google Scholar 

  • Gonzalez-Chávez, M. C., Ortega-Larrocea, M. P., Carrillo-González, R., López-Meyer, M., Xoconostle-Cázares, B., Gomez, S. K., Harrison, M. J., Figueroa-López, A. M., & Maldonado-Mendoza, I. E. (2011). Arsenate induces the expression of fungal genes involved in as transport in arbuscular mycorrhiza. Fungal Biology, 115, 1197–1209.

    Article  Google Scholar 

  • Grcman, H., Vodnik, D., Velikonja-Bolta, S., & Lestan, D. (2003). Ethylenediaminedissuccinate as a new chelate for environmentally safe enhanced lead phytoextraction. Journal of Environmental Quality, 32, 500–506.

    Article  CAS  Google Scholar 

  • Hassan, S. E. D., Boon, E., St-Arnaud, M., & Hijri, M. (2011). Molecular biodiversity of arbuscular mycorrhizal fungi in trace metal polluted soils. Molecular Ecology, 20, 3469–3483.

    Article  Google Scholar 

  • Helgason, T., & Fitter, A. H. (2009). Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi (phylum Glomeromycota). Journal of Experimental Botany, 60, 2465–2480.

    Article  CAS  Google Scholar 

  • Hossain, M. A., Piyatida, P., Teixeira Da Silva, J. A., & Fujita, M. (2012). Molecular mechanism of heavy metal toxicity and tolerance in plants: Central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. Journal of Botany, 872875, 1–37. https://doi.org/10.1155/2012/872875.

    Article  CAS  Google Scholar 

  • Janouskova, M., Pavlikova, D., Macek, T., & Vosatka, M. (2005). Arbuscular mycorrhiza decreases cadmium phytoextraction by transgenic tobacco with inserted metallothionein. Plant and Soil, 272, 29–40.

    Article  CAS  Google Scholar 

  • Jia, X., Zhao, Y., Liu, T., Huang, S., & Chang, Y. (2016). Elevated CO2 increases glomalin-related soil protein (GRSP) in the rhizosphere of Robinia pseudoacacia L. seedlings in Pb- and Cd-contaminated soils. Environmental Pollution, 218, 349–357.

    Article  CAS  Google Scholar 

  • Joner, E. J., Briones, R., & Leyval, C. (2000). Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant and Soil, 226, 227–234.

    Article  CAS  Google Scholar 

  • Kaldorf, M., Kuhn, A. J., Schroder, W. H., Hildebrandt, U., & Bothe, H. (1999). Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. Journal of Plant Physiology, 154, 718–728.

    Article  CAS  Google Scholar 

  • Krishnamoorthy, R. (2015). Exploring the biodiversity of arbuscular mycorrhizal fungi and associated endobacteria to improve maize growth under salt stress condition. Dissertation for the degree of doctor of philosophy, Chungbuk National University, South Korea.

    Google Scholar 

  • Krishnamoorthy, R., Kim, C. G., Subramanian, P., Kim, K. Y., Selvakumar, G., & Sa, T. M. (2015). Arbuscular mycorrhizal fungi community structure, abundance and species richness changes in soil by different levels of heavy metal and metalloid concentration. PLoS One, 1–15. https://doi.org/10.1371/journal.pone.0128784.

    Article  Google Scholar 

  • Krishnamoorthy, R., Venkateswaran, V., Senthilkumar, M., Anandham, R., Selvakumar, G., Kim, K. Y., Kang, Y. Y., & Sa, T. M. (2017). Potential microbiological approaches for the remediation of heavy metal-contaminated soils. In D. Singh, H. Singh, & R. Prabha (Eds.), Plant-microbe interactions in agro-ecological perspectives (pp. 341–366). Singapore: Springer.

    Chapter  Google Scholar 

  • Kroopnick, P. M. (1994). Vapor abatement cost analysis methodology for calculating life cycle costs for hydrocarbon vapor extracted during soil venting. In D. L. Wise & D. J. Trantolo (Eds.), Remediation of hazardous waste (pp. 779–790). New York: Marcel Dekker.

    Google Scholar 

  • Kulakow, P. A., Schwab, A. P., & Banks, M. K. (2000). Screening plant species for growth on weathered, petroleum hydrocarbon-contaminated sediments. International Journal of Phytoremediation, 2, 297–317.

    Article  CAS  Google Scholar 

  • Latef, A. A. A. (2013). Growth and some physiological activities of pepper (Capsicum annuum L.) in response to cadmium stress and mycorrhizal symbiosis. Journal of Agricultural Science and Technology, 15, 1437–1448.

    Google Scholar 

  • Leung, H. M., Ye, Z. H., & Wong, M. H. (2006). Interactions of mycorrhizal fungi with Pteris vittata (as hyperaccumulator) in as-contaminated soils. Environmental Pollution, 139, 1–8.

    Article  CAS  Google Scholar 

  • Malik, N., & Biswas, A. K. (2012). Role of higher plants in remediation of metal contaminated sites. Scientific Reviews and Chemical Communications, 2, 141–146.

    CAS  Google Scholar 

  • Martin, F., Perotto, S., & Bonfante, P. (2007). Mycorrhizal fungi: A fungal community at the interface between soil and roots. In R. Pinton, Z. Varanini, & P. Nannipieri (Eds.), The rhizosphere: Biochemistry and organic substances at the soil-plant interface (pp. 201–236). New York: Marcel Dekker.

    Google Scholar 

  • Nichols, K. (2003). Characterization of glomalin, a glycoprotein produced by arbuscular mycorrhizal fungi. PhD Dissertation, University of Maryland, College Park, Maryland.

    Google Scholar 

  • Nogueira, M. A., Nehls, U., Hampp, R., Poralla, K., & Cardoso, E. J. B. N. (2007). Mycorrhiza and soil bacteria influence extractable iron and manganese in soil and uptake by soybean. Plant and Soil, 298, 273–284.

    Article  CAS  Google Scholar 

  • Pawlowska, T. E., & Charvat, I. (2004). Heavy-metal stress and developmental patterns of arbuscular mycorrhizal fungi. Applied and Environmental Microbiology, 70, 6643–6649.

    Article  CAS  Google Scholar 

  • Pawlowska, T. E., Chaney, R. L., Chin, M., & Charvat, I. (2000). Effects of metal phytoextraction practices on the indigenous community of arbuscular mycorrhizal fungi at a metal-contaminated landfill. Applied and Environmental Microbiology, 66, 2526–2530.

    Article  CAS  Google Scholar 

  • Rajkumar, M., Sandhya, S., Prasad, M. N. V., & Freitas, H. (2012). Perspectives of plant associated microbes in heavy metal phytoremediation. Biotechnology Advances, 30, 1562–1574.

    Article  CAS  Google Scholar 

  • Rascio, N., & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Science, 180, 169–181.

    Article  CAS  Google Scholar 

  • Renker, C., Blanke, V., & Buscot, F. (2005). Diversity of arbuscular mycorrhizal fungi in grassland spontaneously developed on area polluted by a fertilizer plant. Environmental Pollution, 135, 255–266.

    Article  CAS  Google Scholar 

  • Rillig, M. C. (2004). Arbuscular mycorrhizae, glomalin and soil quality. Canadian Journal of Soil Science, 84, 355–363.

    Article  Google Scholar 

  • Rillig, M. C. (2005). A connection between fungal hydrophobins and soil water repellency? Pedobiologia, 49, 395–399.

    Article  CAS  Google Scholar 

  • Rillig, M. C., & Mummey, D. L. (2006). Mycorrhizas and soil structure. New Phytologist, 171, 41–53.

    Article  CAS  Google Scholar 

  • Rillig, M. C., Wright, S. F., Nichols, K. A., Schmidt, W. F., & Torn, M. S. (2001). Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant and Soil, 233, 167–177.

    Article  CAS  Google Scholar 

  • Sanders, I., & Croll, D. (2010). Arbuscular mycorrhiza: The challenge to understand the genetics of the fungal partner. Annual Review of Genetics, 44, 271–292.

    Article  CAS  Google Scholar 

  • Sarma, H. (2011). Metal Hyperaccumulation in plants: A review focusing on phytoremediation technology. Journal of Environmental Science and Technology, 4, 118–138.

    Article  CAS  Google Scholar 

  • Sieverding, E., & Oehl, F. (2006). Revision of Entrophospora and description of Kuklospora and Intraspora, two new genera in the arbuscular mycorrhizal Glomeromycetes. Journal of Applied Botany and Food Quality, 80, 69–81.

    Google Scholar 

  • Singh, H. (2006). Mycorrhizal fungi in rhizosophere bioremediation. In H. Singh (Ed.), Mycoremediation: Fungal bioremediation (pp. 533–572). New York: Wiley.

    Chapter  Google Scholar 

  • Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis. Cambridge, London: Academic.

    Google Scholar 

  • Srivastava, S., Mishra, S., Tripathi, R. D., Dwivedi, S., Trivedi, P. K., & Tandon, P. K. (2007). Phytochelatins and antioxidant systems respond differentially during arsenite and arsenate stress in Hydrilla verticillata (L.f.) Royle. Environmental Science & Technology, 41, 2930–2936.

    Article  CAS  Google Scholar 

  • SzczygÅ‚owska, M., Piekarska, A., Konieczka, P., & NamieÅ›nik, J. (2011). Use of Brassica plants in the phytoremediation and biofumigation processes. International Journal of Molecular Sciences, 12, 7760–7771.

    Article  Google Scholar 

  • Tonin, C., Vandenkoornhuyse, P., Joner, E. J., Straczek, J., & Leyval, C. (2001). Assessment of arbuscular mycorrhizal fungi diversity in the rhizosphere of Viola calaminaria and effect of these fungi on heavy metal uptake by clover. Mycorrhiza, 10, 161–168.

    Article  CAS  Google Scholar 

  • Turnau, K., & Mesjasz-Przybylowicz, J. (2003). Arbuscular mycorrhiza of Berkheya coddii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza, 13, 185–190.

    Article  Google Scholar 

  • Vallino, M., Massa, N., Lumini, E., Bianciotto, V., Berta, G., & Bonfante, P. (2006). Assessment of arbuscular mycorrhizal fungal diversity in roots of Solidago gigantea growing in a polluted soil in northern Italy. Environmental Microbiology, 8, 971–983.

    Article  Google Scholar 

  • Villiers, F., Ducruix, C., Hugouvieux, V., Ezan, N. J. E., Garin, J., Junot, C., & Bourguignon, J. (2011). Investigating the plant response to cadmium exposure by proteomic and metabolomic approaches. Proteomics, 11, 1650–1663.

    Article  CAS  Google Scholar 

  • Vodnik, D., Grcman, H., Macek, I., Van, J., Elteren, J. T., & Kovacevic, M. (2008). The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil. Science of the Total Environment, 392, 130–136.

    Article  CAS  Google Scholar 

  • Weissenhorn, I., Leyval, C., & Berthelin, J. (1995). Bioavailability of heavy metals and abundance of arbuscular mycorrhiza in a soil polluted by atmospheric deposition from a smelter. Biology and Fertility of Soils, 19, 22–28.

    Article  CAS  Google Scholar 

  • Wilson, G. W. T., Rice, C. W., Rillig, M. C., Springer, A., & Hartnett, D. C. (2009). Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: Results from long-term field experiments. Ecology Letters, 12, 452–461.

    Article  Google Scholar 

  • Wright, S. F., Franke-Snyder, M., Morton, J. B., & Upadhyaya, A. (1996). Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant and Soil, 181, 193–203.

    Article  CAS  Google Scholar 

  • Wu, Z. P., Mcgrouther, K., Huang, J. D., Wu, P. B., Wu, W. D., & Wang, H. L. (2014). Decomposition and the contribution of glomalin-related soil protein (GRSP) in heavy metal sequestration: Field experiment. Soil Biology and Biochemistry, 68, 283–290.

    Article  CAS  Google Scholar 

  • Zarei, M., Konig, S., Hempel, S., Nekouei, M. K., Savaghebi, G., & Buscot, F. (2008). Community structure of arbuscular mycorrhizal fungi associated to Veronica rechingeri at the Anguran zinc and lead mining region. Environmental Pollution, 156, 1277–1283.

    Article  CAS  Google Scholar 

  • Zarei, M., Hempel, S., Wubet, T., Schäfer, T., Savaghebi, G., Jouzani, G. S., Nekouei, M. K., & Buscot, F. (2010). Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environmental Pollution, 158, 2757–2765.

    Article  CAS  Google Scholar 

  • Zenk, M. H. (1996). Heavy metal detoxification in higher plants: A review. Gene, 179, 21–30.

    Article  CAS  Google Scholar 

  • Zhang, H., Xu, W., Guo, J., He, Z., & Ma, M. (2005). Coordinated responses of phytochelatins and metallothioneins to heavy metals in garlic seedlings. Plant Science, 169, 1059–1065.

    Article  CAS  Google Scholar 

  • Zhang, J., Tang, X. L., He, X. H., & Liu, J. X. (2015). Glomalin-related soil protein responses to elevated CO2 and nitrogen addition in a subtropical forest: Potential consequences for soil carbon accumulation. Soil Biology and Biochemistry, 83, 142–149.

    Article  CAS  Google Scholar 

  • Zhang, Y., Hu, J., Bai, J., Wang, J., Yin, R., Wang, J., & Lin, X. (2018a). Arbuscular mycorrhizal fungi alleviate the heavy metal toxicity on sunflower (Helianthus annuus L.) plants cultivated on a heavily contaminated field soil at a WEEE-recycling site. Science of the Total Environment, 628–629, 282–290.

    Article  Google Scholar 

  • Zhang, J., Martinoia, E., & Lee, Y. (2018b). Vacuolar transporters for cadmium and arsenic in plants and their applications in phytoremediation and crop development. Plant and Cell Physiology, pcy006. https://doi.org/10.1093/pcp/pcy006.

  • Zhipeng, W., Weidong, W., Shenglu, Z., & Shaohua, W. (2016). Mycorrhizal inoculation affects Pb and Cd accumulation and translocation in Pakchoi (Brassica chinensis L.). Pedosphere, 26, 13–26.

    Article  Google Scholar 

  • Zhu, X. F., Zheng, C., Hu, Y. T., Jiang, A., Liu, Y., Dong, N. Y., Yang, J. L., & Zheng, S. J. (2011). Cadmium-induced oxalate secretion from root apex is associated with cadmium exclusion and resistance in Lycopersicon esulentum. Plant, Cell & Environment, 34, 1055–1064.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Senthilkumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krishnamoorthy, R., Venkatramanan, V., Senthilkumar, M., Anandham, R., Kumutha, K., Sa, T. (2019). Management of Heavy Metal Polluted Soils: Perspective of Arbuscular Mycorrhizal Fungi. In: Shah, S., Venkatramanan, V., Prasad, R. (eds) Sustainable Green Technologies for Environmental Management. Springer, Singapore. https://doi.org/10.1007/978-981-13-2772-8_4

Download citation

Publish with us

Policies and ethics