Skip to main content

An Empirical Investigation into Water Footprint of Concrete Industry in Iran

  • Chapter
  • First Online:
Environmental Water Footprints

Abstract

Reduction of water consumption of concrete production is of particular importance within the construction industry to take steps toward sustainable construction materials. However, a lack of available benchmark metrics has made it difficult for governments to identify areas to target for water consumption reduction and even to provide a basis to analyse water consumption impacts of concrete production on their national environment. This chapter looks at water footprint of concrete industry based on a life cycle assessment approach. A comprehensive water footprint model of concrete production is provided. Elaboration is paid to the raw materials (cement and aggregates), energy, transportation and human’s food, as important factors affecting water footprint of the concrete industry. A large cement plant, a concrete plant and an aggregate producer in Iran are analysed and effects of different parameters on the water footprint model are evaluated based on a sensitivity analysis method. The chapter shows that the water consumption intensities of cement, aggregate and concrete productions account for 2.126, 0.583 and 0.967 m3/ton, respectively demonstrating that the concrete industry should be treated as a high water consumer industry. The chapter demonstrates that shifting to a high contribution of renewable energy is one effective solution for the water consumption problem of the concrete production. In addition, the chapter illustrates that the personnel’s food contributes to 6850, 565,000, and 22,610 m3 water footprint, in the investigated concrete, cement and aggregate plants in 2017, respectively; showing the effect of human management on the water footprint reduction. This chapter will be of interest to those seek sustainability in concrete production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EWR:

Environmental water requirements

DWC:

Direct water consumption

ISO:

International Organization for Standardization

LCA:

Life cycle assessment

MAR:

Mean annual runoff (total amount of available fresh water)

VWC:

Virtual water consumption

WCI:

Water consumption intensity

WF:

Water footprint

WSI:

Water stress index

References

  • Ababaei, B., & Etedali, H. R. (2014). Estimation of water footprint components of Iran’s wheat production: Comparison of global and national scale estimates. Environmental processes, 1(3), 193–205.

    Article  Google Scholar 

  • Ababaei, B., & Etedali, H. R. (2017). Water footprint assessment of main cereals in Iran. Agricultural Water Management, 179, 401–411.

    Article  Google Scholar 

  • Acquaye, A., Feng, K., Oppon, E., Salhi, S., Ibn-Mohammed, T., Genovese, A., et al. (2017). Measuring the environmental sustainability performance of global supply chains: A multi-regional input-output analysis for carbon, sulphur oxide and water footprints. Journal of Environmental Management, 187, 571–585.

    Article  CAS  Google Scholar 

  • Allan, J. (1998). Virtual water: A strategic resource global solutions to regional deficits. Journal of groundwater, 36, 545–546.

    Article  CAS  Google Scholar 

  • Bod, A. M. (2014). An analysis of cement industry. Cement Technology., 73, 120. (in Farsi).

    Google Scholar 

  • Bruinsma, J. (2009). The resource outlook to 2050: By how much do land, water, and crop yields need to increase by 2050? FAO Expert Meeting on ‘How to feed the world in 2050’. Retrieved from Rome.

    Google Scholar 

  • Carmichael, D.G., & Balatbat, M.C. (2009). Sustainability on construction projects as a business opportunity. In SSEE 2009: Solutions for a sustainable planet (pp. 465–474). Barton, A.C.T.: Engineers Australia.

    Google Scholar 

  • Cemex. (2015). Sustainable Development Report. Building Resilient and Sustainable Urban Communities.

    Google Scholar 

  • Chapagain, A. K., & Orr, S. (2009). An improved water footprint methodology linking global consumption to local water resources: A case of Spanish tomatoes. Journal of Environmental Management, 90, 1219–1228.

    Article  CAS  Google Scholar 

  • Chehreghni, H. (2004). Environment in cement industry. Hazegh publications (in Farsi).

    Google Scholar 

  • Chen, C., Habert, G., Bouzidi, Y., & Jullien, A. (2010). Environmental impact of cement production: Detail of the different processes and cement plant variability evaluation. Journal of Cleaner Production, 18, 478–485.

    Article  CAS  Google Scholar 

  • Chico, D., Aldaya, M. M., & Garrido, A. (2013). A water footprint assessment of a pair of jeans: The influence of agricultural policies on the sustainability of consumer products. Journal of Cleaner Production, 57, 238–248.

    Article  Google Scholar 

  • Ditlevsen, O., & Madsen, H. O. (1996). Structural reliability methods. Hoboken, NJ: Wiley.

    Google Scholar 

  • Doe, U. (2006). Energy demands on water resources. Report to congress on the interdependency of energy and water. Washington DC: US Department of Energy, 1.

    Google Scholar 

  • Domenech Quesada, J. L. (2007). Huella Ecológica y Desarrollo Sostenible (Ecological Footprint and Sustainable Development). Madrid, Spain: AENOR.

    Google Scholar 

  • Enerdata. Global energy and CO2 data. www.enerdata.net. Accessed June 26, 2015.

  • Ercin, A. E., Aldaya, M. M., & Hoekstra, A. Y. (2011). Corporate water footprint accounting and impact assessment: The case of the water footprint of a sugar-containing carbonated beverage. Journal of water resources management, 25(2), 721–741.

    Article  Google Scholar 

  • Ercin, A. E., Aldaya, M. M., & Hoekstra, A. Y. (2012). The water footprint of soy milk and soy burger and equivalent animal products. Journal of ecological indicators, 18, 392–402.

    Article  Google Scholar 

  • FAO. (2015). AQUASTAT Database. Available from: http://www.fao.org/nr/water/aquastat/main/index.stm, visited March, 2018.

  • Finnveden, G., Hauschild, M. Z., Ekvall, T., Guinee, J., Heijungs, R., Hellweg, S., et al. (2009). Recent developments in life cycle assessment. Journal of Environmental Management, 91(1), 1–21.

    Article  Google Scholar 

  • Finnveden, G., & Moberg, A. (2005). Environmental systems analysis tools—an overview. Journal of Cleaner Production, 13, 1165–1173.

    Article  Google Scholar 

  • Gao, C., Wang, D., Dong, H., Cai, J., Zhu, W., & Du, T. (2011). Optimization and evaluation of steel industry’s water-use system. Journal of Cleaner Production, 19(1), 64–69.

    Article  Google Scholar 

  • Gartner, E. (2004). Industrially interesting approaches to “low-CO2” cements. Cement and Concrete Research, 34, 1489–1498.

    Article  CAS  Google Scholar 

  • Georgiopoulou, M., & Lyberatos, G. (2017). Life cycle assessment of the use of alternative fuels in cement kilns: A case study. Journal of Environmental Management.

    Google Scholar 

  • Gu, Y., Xu, J., Keller, A. A., Yuan, D., Li, Y., Zhang, B., et al. (2015). Calculation of water footprint of the iron and steel industry: a case study in Eastern China. Journal of Cleaner Production, 92, 274–281.

    Article  Google Scholar 

  • Hasanbeigi, A., Price, L., & Lin, E. (2012). Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: a technical review. Renewable and Sustainable Energy Reviews, 16, 6220–6238.

    Article  CAS  Google Scholar 

  • Herath, I., Clothier, B., Horne, D., & Singh, R. (2011a). Assessing freshwater scarcity in New Zealand. New Zealand Life Cycle Management Centre Working paper Series 02/11, pp. 21–26.

    Google Scholar 

  • Herath, I., Deurer, M., Horne, D., Singh, R., & Clothier, B. (2011b). The water footprint of hydroelectricity: A methodological comparison from a case study in New Zealand. Journal of Cleaner Production, 19(14), 1582–1589.

    Article  Google Scholar 

  • Hoekstra, A. Y. (2002). Virtual water trade: Proceedings of the international expert meeting on virtual water trade. In A. Y. Hoekstra (Ed.), Value of Water Research Report. The Netherlands: IHE Delft.

    Google Scholar 

  • Hoekstra, A.Y. (2008). The water footprint of food. In Forare, J. (ed.) Water for food (vol. 28, pp. 49–60). The Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (Formas), Stockholm, Sweden.

    Google Scholar 

  • Hoekstra, A. Y., Chapagain, A. K., Aldaya, M. M., & Mekonnen, M. M. (2011). The water footprint assessment manual. Setting the global standard. London: Earthscan.

    Google Scholar 

  • Hoekstra, A. Y., & Mekonnen, M. M. (2012). The water footprint of humanity. Proceedings of the National Academy of Sciences, 109, 3232–3237.

    Article  CAS  Google Scholar 

  • Holcim. (2015). Corporate Sustainable Development Report. Building on Ambition.

    Google Scholar 

  • Horvath, A., & Matthews, H. S. (2004). Advancing sustainable development of infrastructure systems. Journal of Infrastructure Systems, 10(3), 77–78.

    Article  Google Scholar 

  • Hosseinian, S. M., & Nezamoleslami, R. (2018). Water footprint and virtual water assessment in cement industry: A case study in Iran. Journal of Cleaner Production, 172, 2454–2463.

    Article  Google Scholar 

  • Hunt, R. G., Sellers, J. D., & Franklin, W. E. (1992). Resource and environmental profile analysis: A life cycle environmental assessment for products and procedures. Environmental Impact Assessment Reviews, 12, 245–269.

    Article  Google Scholar 

  • Huntzinger, D. N., & Eatmon, T. D. (2009). A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. Journal of Cleaner Production, 17, 668–675.

    Article  CAS  Google Scholar 

  • International Organization for Standardization (ISO). (2006a). ISO 14040:2006, Environmental management—Life cycle assessment—Principles and framework.

    Google Scholar 

  • International Organization for Standardization (ISO). (2006b). ISO 14044:2006, Environmental management—Life cycle assessment—Requirements and guidelines.

    Google Scholar 

  • International Organization for Standardization (ISO). (2014). ISO 14046:2014 Environmental Management—Water footprint—Principles, requirements and guidelines.

    Google Scholar 

  • Jeswani, H. K., & Azapagic, A. (2011). Water footprint: methodologies and a case study for assessing the impacts of water use. Journal of Cleaner Production, 19, 1288–1299.

    Article  Google Scholar 

  • Josa, A., Aguado, A., Cardim, A., & Byars, E. (2007). Comparative analysis of the life cycle impact assessment of available cement inventories in the EU. Cement and Concrete Research, 37(5), 781–788.

    Article  CAS  Google Scholar 

  • Josa, A., Aguado, A., Heino, A., Byars, E., & Cardim, A. (2004). Comparative analysis of available life cycle inventories of cement in the EU. Cement and Concrete Research, 34(8), 1313–1320.

    Article  CAS  Google Scholar 

  • Karandish, F., Salari, S., & Darzi-Naftchali, A. (2015). Application of virtual water trade to evaluate cropping pattern in arid regions. Water Resources Management, 29(11), 4061–4074.

    Article  Google Scholar 

  • Kibert, C. J., & Fard, M. M. (2012). Differentiating among low-energy, low-carbon and net-zero-energy building strategies for policy formulation. Journal of Building Research & Information, 40(5), 625–637.

    Article  Google Scholar 

  • King, C. W., & Webber, M. E. (2008). Water intensity of transportation. Environmental Science & Technology, 42(21), 7866–7872. ACS Publications.

    Article  CAS  Google Scholar 

  • Knoema. (2005). National water footprint statistics. https://knoema.com/WFPNWFPS2015/national-water-footprint-statistics-1996-2005?location=1000910-iran. Accessed September 10, 2017.

  • Korre, A., & Durucan, S. (2009). Life cycle assessment of aggregates. EVA025—Final Report: Aggregates industry life cycle assessment model: modelling tools and case studies published by WRAP.

    Google Scholar 

  • Lafarge. (2012). Sustainability 11th Report 2011.

    Google Scholar 

  • Mack-Vergara, Y. L., & John, V. M. (2017). Life cycle water inventory in concrete production—A review. Journal of resources, conservation and recycling, 122, 227–250.

    Article  Google Scholar 

  • Mekonnen, M.M., Gerbens-Leenes, P., & Hoekstra, A.Y. (2015). The consumptive water footprint of electricity and heat: A global assessment. Environmental science. Journal of Water Research & Technology, 1(3), 285–297.

    Google Scholar 

  • Mekonnen, M. M., & Hoekstra, A. Y. (2014). water footprint benchmarks for crop production: A first global assessment. Journal of ecological indicators, 46, 214–223.

    Article  Google Scholar 

  • Mellor, A.E. (2017). Assessing water footprint and associated water scarcity indicators at different spatial scales: a case study of concrete manufacture in New Zealand: a thesis presented in partial fulfilment of the requirements for the degree of Master in Environmental Management, Massey University, Manawatu Campus, New Zealand (Doctoral dissertation, Massey University).

    Google Scholar 

  • Mielke, E., Anadon, L.D., & Narayanamurti, V. (2010). Water consumption of energy resource extraction, processing, and conversion. Belfer Center for Science and International Affairs.

    Google Scholar 

  • Ness, B., Urbel-Piirsalu, E., Anderberg, S., & Olsson, L. (2007). Categorising tools for sustainability assessment. Journal of ecological economics, 60(3), 498–508.

    Article  Google Scholar 

  • Netz, J., & Sundin, J. (2015). Water footprint of concrete. (Environmental Strategies, Second Cycle), Royal Institute of Technology.

    Google Scholar 

  • Neville, Adam M. (1995). Properties of concrete (Vol. 4). London: Longman.

    Google Scholar 

  • Owens, J. W. (1997). Life cycle assessment: constraints on moving from inventory to impact assessment. Journal of Industrial Ecology, 1(1), 37–49.

    Article  Google Scholar 

  • Pfister, S., Saner, D., & Koehler, A. (2011). The environmental relevance of freshwater consumption in global power production. The International Journal of Life Cycle Assessment, 16(6), 580–591.

    Article  Google Scholar 

  • Ridoutt, B. G., & Pfister, S. (2010). Reducing humanity’s water footprint. Journal of Environmental Science Technology, 44(16), 6019–6021.

    Article  CAS  Google Scholar 

  • Sakai, K., & Noguchi, T. (2013). The sustainable use of concrete. Boca Raton: CRC Press.

    Google Scholar 

  • Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., et al. (2008). Global sensitivity analysis: The primer. Hoboken, NJ: Wiley.

    Google Scholar 

  • Schneider, M., Romer, M., Tschudin, M., & Bolio, H. (2011). Sustainable cement production present and future. Cement and Concrete Research, 41(7), 642–650.

    Article  CAS  Google Scholar 

  • Schulte, P. (2014). Defining water scarcity, water stress, and water risk: It is not just semantics. Retrieved from http://pacinst.org/water-definitions/.

  • Scown, C. D., Horvath, A., & McKone, T. E. (2011). Water footprint of U.S. transportation fuels. Environmental Science and Technology, 45, 2541–2553.

    Article  CAS  Google Scholar 

  • Shiklomanov, I. A., & Rodda, J. C. (2003). World water resources at the beginning of the 21st century. Cambridge, UK: UNESCO and Cambridge University Press.

    Google Scholar 

  • Siew, R. A. (2015). Review of corporate sustainability reporting tools (SRTs). Journal of Environmental Management, 164, 180–195.

    Article  Google Scholar 

  • Sjunnesson, J. (2005). Life cycle assessment of concrete. Master thesis, Lund University, Sweden.

    Google Scholar 

  • Smakhtin, V., Revenga, C., & Döll, P. (2004b). Taking into account environmental water requirements in the global-scale water resource assessment. Retrieved from Colombo, Sri Lanka.

    Google Scholar 

  • Spiess, W. (2014). Virtual water and water footprint of food production and processing. In Encyclopedia of agriculture and food systems (pp. 333–355).

    Chapter  Google Scholar 

  • United Nations. (2013). World populations’ prospects: The 2012 revision, Volume 1: Comprehensive tables. Retrieved from New York, USA.

    Google Scholar 

  • Valderrama, C., Granados, R., Cortina, J. L., Gasol, C. M., Guillem, M., & Josa, A. (2012). Implementation of best available techniques in cement manufacturing: A life-cycle assessment study. Journal of Cleaner Production, 25, 60–67.

    Article  Google Scholar 

  • Van Oel, P., & Hoekstra, A. (2012). Towards quantification of the water footprint of paper: A first estimate of its consumptive component. Journal of water resources management, 26, 733–749.

    Article  Google Scholar 

  • Verma, S., Kampman, D. A., Van Der Zaag, P., & Hoekstra, A. Y. (2009). Going against the flow: A critical analysis of inter-state virtual water trade in the context of India’s National River Linking Program. Journal of physics and chemistry of the earth, Parts A/B/C, 34(4), 261–269.

    Article  Google Scholar 

  • Williams, E.D., & Simmons, J.E. (2013). Water in the energy industry: An introduction. www.bp.com/energysustainabilitychallenge, visited on June 2017.

  • World Business Council for Sustainable Development. (2014). Protocol for water reporting.

    Google Scholar 

  • Zhang, G., Sandanayake, M., Setunge, S., Li, C., & Fang, J. (2017). Selection of emission factor standards for estimating emissions from diesel construction equipment in building construction in the Australian context. Journal of Environmental Management, 187, 527–536.

    Article  CAS  Google Scholar 

  • Zhuo, L., Mekonnen, M. M., & Hoekstra, A. Y. (2016). The effect of inter-annual variability of consumption, production, trade and climate on crop-related green and blue water footprints and inter-regional virtual water trade: A study for China (1978–2008). Journal of water research, 94, 73–85.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mahdi Hosseinian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahdi Hosseinian, S., Nezamoleslami, R. (2019). An Empirical Investigation into Water Footprint of Concrete Industry in Iran. In: Muthu, S. (eds) Environmental Water Footprints. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-13-2739-1_3

Download citation

Publish with us

Policies and ethics