Skip to main content

The Impact of Robotics in Head and Neck Reconstruction

  • Chapter
  • First Online:
Restoration, Reconstruction and Rehabilitation in Head and Neck Cancer
  • 527 Accesses

Abstract

Over the past 3 decades, the robotic platform has emerged as a groundbreaking technology that has revolutionized the practice of minimally invasive surgeons. Owing to greater degrees of freedom, improved resolution, and tremor elimination, it allowed complex procedures to be performed with more confidence. These attributes of the robot, along with its precision and HD three-dimensional optics, make it an attractive platform for reconstructive plastic surgeons. Reconstructive surgery has always required superior levels of technical precision and meticulous attention to detail to achieve durable outcomes. The robotic system allows certain reconstructive challenges that were previously technically unfeasible.

Over the past 10-15 years, the senior author (J C Selber) has established 3 solid applications of robotics in reconstructive surgery: (1) Trans-oral Robotic Reconstructive Surgery (TORRS) for complex head and neck reconstruction without dividing the lip or mandible; (2) robotic microvascular, microneural, and microlymphatic anastomoses, with “supra-human” levels of precision; and (3) minimal access harvest of both the Latissimus Dorsi and Rectus Abdominis muscles, minimizing donor-site morbidity and enhancing cosmetic outcomes.

In this chapter, the current clinical applications of the robotic technology in reconstructive surgery are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Health Quality Ontario (2010) Robotic-assisted minimally invasive surgery for gynecologic and urologic oncology: an evidence-based analysis. Ont Health Technol Assess Ser 10(27):1–118 http://www.ncbi.nlm.nih.gov/pubmed/23074405. Accessed 27 May 2017

    Google Scholar 

  2. Jung MK, Hagen ME, Buchs NC, Buehler LH, Morel P (2017) Robotic bariatric surgery: a general review of the current status. Int J Med Robot Comput Assist Surg 13:e1834 http://www.ncbi.nlm.nih.gov/pubmed/28544251. Accessed 27 May 2017

    Article  Google Scholar 

  3. Kirks RC, Lorimer PD, Fruscione M, Cochran A, Baker EH, Iannitti DA et al (2017) Robotic longitudinal pancreaticojejunostomy for chronic pancreatitis: Comparison of clinical outcomes and cost to the open approach. Int J Med Robot Comput Assist Surg 13:e1832 http://www.ncbi.nlm.nih.gov/pubmed/28548233. Accessed 27 May 2017

    Article  Google Scholar 

  4. Kroczek K, Kroczek P, Nawrat Z (2017) Medical robots in cardiac surgery – application and perspectives. Polish J Cardio-Thoracic Surg 1(1):79–83 http://www.ncbi.nlm.nih.gov/pubmed/28515758. Accessed 27 May 2017

    Article  Google Scholar 

  5. Al-Mazrou A, Kiran R, Lee-Kong S, Feingold D, Pappou E (2017) Robotic right hemicolectomy with intracorporeal anastomosis using V-Loc™ – Video Vignette. Color Dis 19:696 http://www.ncbi.nlm.nih.gov/pubmed/28544562. Accessed 27 May 2017

    Article  CAS  Google Scholar 

  6. McLeod IK, Melder PC (2005) Da Vinci robot-assisted excision of a vallecular cyst: a case report. Ear Nose Throat J 84(3):170–172 http://www.ncbi.nlm.nih.gov/pubmed/15871586. Accessed 27 May 2017

    Article  PubMed  Google Scholar 

  7. McLeod IK, Mair EA, Melder PC (2005) Potential applications of the da Vinci minimally invasive surgical robotic system in otolaryngology. Ear Nose Throat J 84(8):483–487 http://www.ncbi.nlm.nih.gov/pubmed/16220853. Accessed 5 Nov 2013

    Article  PubMed  Google Scholar 

  8. Howard J, Masterson L, Dwivedi RC, Riffat F, Benson R, Jefferies S et al (2016) Minimally invasive surgery versus radiotherapy/chemoradiotherapy for small-volume primary oropharyngeal carcinoma. In: Howard J (ed) Cochrane Database of Systematic Reviews. Chichester, John Wiley & Sons, Ltd http://doi.wiley.com/10.1002/14651858.CD010963.pub2. Accessed 22 May 2017

    Google Scholar 

  9. Weinstein GS, O’Malley BW, Snyder W, Sherman E, Quon H (2007) Transoral robotic surgery: radical tonsillectomy. Arch Otolaryngol Head Neck Surg 133(12):1220–1226 http://www.ncbi.nlm.nih.gov/pubmed/18086963. Accessed 5 Nov 2013

    Article  PubMed  Google Scholar 

  10. Moore EJ, Olsen KD, Kasperbauer JL (2009) Transoral robotic surgery for oropharyngeal squamous cell carcinoma: a prospective study of feasibility and functional outcomes. Laryngoscope 119(11):2156–2164 http://www.ncbi.nlm.nih.gov/pubmed/19824067. Accessed 6 Nov 2013

    Article  PubMed  Google Scholar 

  11. Genden EM, Desai S, Sung C-K (2009) Transoral robotic surgery for the management of head and neck cancer: a preliminary experience. Head Neck 31(3):283–289 http://www.ncbi.nlm.nih.gov/pubmed/18972413. Accessed 6 Nov 2013

    Article  PubMed  Google Scholar 

  12. Selber JC, Robb G, Serletti JM, Weinstein G, Weber R, Holsinger FC (2010) Transoral robotic free flap reconstruction of oropharyngeal defects: a preclinical investigation. Plast Reconstr Surg 125(3):896–900 http://www.ncbi.nlm.nih.gov/pubmed/20195117. Accessed 6 Nov 2013

    Article  CAS  PubMed  Google Scholar 

  13. Mukhija VK, Sung C-K, Desai SC, Wanna G, Genden EM (2009) Transoral robotic assisted free flap reconstruction. Otolaryngol Head Neck Surg 140(1):124–125 http://www.ncbi.nlm.nih.gov/pubmed/19130975. Accessed 6 Nov 2013

    Article  PubMed  Google Scholar 

  14. Longfield EA, Holsinger FC, Selber JC (2012) Reconstruction after robotic head and neck surgery: when and why. J Reconstr Microsurg 28(7):445–450 http://www.ncbi.nlm.nih.gov/pubmed/22399257. Accessed 5 Nov 2013

    Article  PubMed  Google Scholar 

  15. Selber JC, Sarhane KA, Ibrahim AE, Holsinger FC (2014) Transoral robotic reconstructive surgery. Semin Plast Surg 28(1):35–38 http://www.ncbi.nlm.nih.gov/pubmed/24872777. Accessed 6 May 2014

    Article  PubMed  PubMed Central  Google Scholar 

  16. Selber JC (2010) Transoral robotic reconstruction of oropharyngeal defects: a case series. Plast Reconstr Surg 126(6):1978–1987 http://www.ncbi.nlm.nih.gov/pubmed/21124136. Accessed 6 Nov 2013

    Article  CAS  PubMed  Google Scholar 

  17. Genden EM, Park R, Smith C, Kotz T (2011) The role of reconstruction for transoral robotic pharyngectomy and concomitant neck dissection. Arch Otolaryngol Head Neck Surg 137(2):151–156 http://www.ncbi.nlm.nih.gov/pubmed/21339401. Accessed 6 Nov 2013

    Article  PubMed  Google Scholar 

  18. Ibrahim AE, Sarhane KA, Selber JC (2017) New frontiers in robotic-assisted microsurgical reconstruction. Clin Plast Surg 44(2):415–423 http://www.ncbi.nlm.nih.gov/pubmed/28340672. Accessed 27 May 2017

    Article  PubMed  Google Scholar 

  19. Genden EM, O’Malley BW, Weinstein GS, Stucken CL, Selber JC, Rinaldo A et al (2012) Transoral robotic surgery: role in the management of upper aerodigestive tract tumors. Head Neck 34(6):886–893 http://www.ncbi.nlm.nih.gov/pubmed/22610591. Accessed 6 Nov 2013

    Article  PubMed  Google Scholar 

  20. Song HG, Yun IS, Lee WJ, Lew DH, Rah DK (2013) Robot-assisted free flap in head and neck reconstruction. Arch Plast Surg 40(4):353–358 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3723995&tool=pmcentrez&rendertype=abstract. Accessed 6 Nov 2013

    Article  PubMed  PubMed Central  Google Scholar 

  21. de Almeida JR, Park RCW, Genden EM (2012) Reconstruction of transoral robotic surgery defects: principles and techniques. J Reconstr Microsurg 28(7):465–472 http://www.ncbi.nlm.nih.gov/pubmed/22744899. Accessed 22 Dec 2013

    Article  PubMed  Google Scholar 

  22. Podolsky DJ, Fisher DM, Wong Riff KWY, Looi T, Drake JM, Forrest CR (2017) Infant robotic cleft palate surgery. Plast Reconstr Surg 139(2):455e–465e http://www.ncbi.nlm.nih.gov/pubmed/28121879. Accessed 28 May 2017

    Article  CAS  PubMed  Google Scholar 

  23. Selber JC (2017) Discussion: infant robotic cleft palate surgery: a feasibility assessment using a realistic cleft palate simulator. Plast Reconstr Surg 139(2):466e–467e http://insights.ovid.com/crossref?an=00006534-201702000-00034. Accessed 28 May 2017

    Article  CAS  PubMed  Google Scholar 

  24. Selber JC (2017) Can i make robotic surgery make sense in my practice? Plast Reconstr Surg 139(3):781e–792e http://insights.ovid.com/crossref?an=00006534-201703000-00053. Accessed 28 May 2017

    Article  CAS  PubMed  Google Scholar 

  25. Nectoux E, Taleb C, Liverneaux P (2009) Nerve repair in telemicrosurgery: an experimental study. J Reconstr Microsurg 25(4):261–265 http://www.ncbi.nlm.nih.gov/pubmed/19048463. Accessed 10 Nov 2013

    Article  PubMed  Google Scholar 

  26. Tigan L, Miyamoto H, Hendriks S, Facca S, Liverneaux P (2014) Interest of telemicrosurgery in peripheral nerve tumors: about a series of seven cases. Chir Main 33(1):13–16 http://www.ncbi.nlm.nih.gov/pubmed/24290701. Accessed 7 Jul 2015

    Article  CAS  PubMed  Google Scholar 

  27. Facca S, Hendriks S, Mantovani G, Selber JC, Liverneaux P (2014) Robot-assisted surgery of the shoulder girdle and brachial plexus. Semin Plast Surg 28(1):39–44 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3946020&tool=pmcentrez&rendertype=abstract. Accessed 6 Jul 2015

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chang DW (2010) Lymphaticovenular bypass for lymphedema management in breast cancer patients: a prospective study. Plast Reconstr Surg 126(3):752–758 http://www.ncbi.nlm.nih.gov/pubmed/20811210. Accessed 10 Nov 2013

    Article  CAS  PubMed  Google Scholar 

  29. Ibrahim AE, Sarhane KA, Selber JC (2018) Robotics in plastic surgery. In: Neligan PC, Gurtner GC (eds) Plastic surgery: 6 volume set, 4th edn. Elsevier, p Vol 1

    Google Scholar 

  30. Geishauser M, Staudenmaier RW, Biemer E (1998) Donor-site morbidity of the segmental rectus abdominis muscle flap. Br J Plast Surg 51(8):603–607 http://www.ncbi.nlm.nih.gov/pubmed/10209463. Accessed 29 May 2017

    Article  CAS  PubMed  Google Scholar 

  31. Bailey SH, Oni G, Guevara R, Wong C, Saint-Cyr M (2012) Latissimus dorsi donor-site morbidity. Ann Plast Surg 68(6):555–558 http://www.ncbi.nlm.nih.gov/pubmed/21629082. Accessed 29 May 2017

    Article  CAS  PubMed  Google Scholar 

  32. Bostwick J, Vasconez LO, Jurkiewicz MJ (1978) Breast reconstruction after a radical mastectomy. Plast Reconstr Surg 61(5):682–693 http://www.ncbi.nlm.nih.gov/pubmed/347475. Accessed 9 Nov 2013

    Article  PubMed  Google Scholar 

  33. Maxwell GP, McGibbon BM, Hoopes JE (1979) Vascular considerations in the use of a latissimus dorsi myocutaneous flap after a mastectomy with an axillary dissection. Plast Reconstr Surg 64(6):771–780 http://www.ncbi.nlm.nih.gov/pubmed/117475. Accessed 9 Nov 2013

    Article  CAS  PubMed  Google Scholar 

  34. Lin CH, Wei FC, Levin LS, Chen MC (1999) Donor-site morbidity comparison between endoscopically assisted and traditional harvest of free latissimus dorsi muscle flap. Plast Reconstr Surg 104(4):1070–1077 quiz 1078. http://www.ncbi.nlm.nih.gov/pubmed/10654751. Accessed 9 Nov 2013

    Article  CAS  PubMed  Google Scholar 

  35. Pomel C, Missana MC, Lasser P (2002) Endoscopic harvesting of the latissimus dorsi flap in breast reconstructive surgery. Feasibility study and review of the literature. Ann Chir 127(5):337–342 http://www.ncbi.nlm.nih.gov/pubmed/12094415. Accessed 9 Nov 2013

    Article  CAS  PubMed  Google Scholar 

  36. Fine NA, Orgill DP, Pribaz JJ (1994) Early clinical experience in endoscopic-assisted muscle flap harvest. Ann Plast Surg 33(5):465–469 http://www.ncbi.nlm.nih.gov/pubmed/7857038. Accessed 9 Nov 2013

    Article  CAS  PubMed  Google Scholar 

  37. Miller MJ, Robb GL (1995) Endoscopic technique for free flap harvesting. Clin Plast Surg 22(4):755–773 http://www.ncbi.nlm.nih.gov/pubmed/8846641. Accessed 2013 Nov 9

    CAS  PubMed  Google Scholar 

  38. Selber JC, Baumann DP, Holsinger CF (2012) Robotic harvest of the latissimus dorsi muscle: laboratory and clinical experience. J Reconstr Microsurg 28(7):457–464 http://www.ncbi.nlm.nih.gov/pubmed/22744894. Accessed 9 Nov 2013

    Article  PubMed  Google Scholar 

  39. Selber JC, Baumann DP, Holsinger FC (2012) Robotic latissimus dorsi muscle harvest: a case series. Plast Reconstr Surg 129(6):1305–1312 http://www.ncbi.nlm.nih.gov/pubmed/22634647. Accessed 9 Nov 2013

    Article  CAS  PubMed  Google Scholar 

  40. Chung J-H, You H-J, Kim H-S, Lee B-I, Park S-H, Yoon E-SA (2015) novel technique for robot assisted latissimus dorsi flap harvest. J Plast Reconstr Aesthet Surg 68(7):966–972 http://www.jprasurg.com/article/S1748681515001503/fulltext. Accessed 9 Jul 2015

    Article  PubMed  Google Scholar 

  41. Ibrahim AE, Clemens MW, Sarhane KA, Selber JC (2016) Robotic surgery in breast reconstruction: harvest of the latissimus dorsi muscle flap. In: Shiffman MA (ed) Breast reconstruction art, science, and new clinical techniques, 1st edn. Springer, Heidelberg http://www.springer.com/us/book/9783319187259

    Google Scholar 

  42. Selber J (2013) Robotic harvest of the latissimus dorsi muscle for breast reconstruction. In: Spiegel A (ed) Breast reconstruction – current perspectives and state of the art techniques. InTech http://www.intechopen.com/books/breast-reconstruction-current-perspectives-and-state-of-the-art-techniques/robotic-harvest-of-the-latissimus-dorsi-muscle-for-breast-reconstruction. Accessed 9 Nov 2013

    Google Scholar 

  43. Selber J, Pederson J (2012) Muscle flaps. Telemicrosurgery: robot assisted microsurgery. Springer, Paris, pp 147–158

    Google Scholar 

  44. Selber J, Pederson J (2012) Robotic muscle harvest. Telemicrosurgery. Springer-Verlag, Paris

    Google Scholar 

  45. Patel NV, Pedersen JC (2012) Robotic harvest of the rectus abdominis muscle: a preclinical investigation and case report. J Reconstr Microsurg 28(7):477–480 http://www.ncbi.nlm.nih.gov/pubmed/21918947. Accessed 10 Nov 2013

    Article  PubMed  Google Scholar 

  46. Ibrahim A, Sarhane K, Pederson J, Selber J (2014) Robotic harvest of the rectus abdominis muscle: principles and clinical applications. Semin Plast Surg 28(1):026–031 https://www.thieme-connect.de.ezproxy.welch.jhmi.edu/products/ejournals/abstract/10.1055/s-0034-1368164. Accessed 6 May 2014

    Article  Google Scholar 

  47. Dabb R, Wrye SW, Hall WW (2000) Endoscopic harvest of the rectus abdominis muscle. Ann Plast Surg 44(5):491–494 http://www.ncbi.nlm.nih.gov/pubmed/10805297. Accessed 9 Nov 2013

    Article  CAS  PubMed  Google Scholar 

  48. Panchulidze I, Berner S, Mantovani G, Liverneaux P (2011) Is haptic feedback necessary to microsurgical suturing? Comparative study of 9/0 and 10/0 knot tying operated by 24 surgeons. Hand Surg 16:1):1–1):3 http://www.ncbi.nlm.nih.gov/pubmed/21348023. Accessed 12 Jul 2015

    Article  PubMed  Google Scholar 

  49. Ibrahim AE, Sarhane KA, Baroud JS, Atiyeh BS (2012) Robotics in plastic surgery, a review. Eur J Plast Surg 35(8):571–578 http://link.springer.com/10.1007/s00238-012-0737-8. Accessed 10 Nov 2013

    Article  Google Scholar 

  50. Satava RM (1995) Virtual reality, telesurgery, and the new world order of medicine. J Image Guid Surg 1(1):12–16 http://www.ncbi.nlm.nih.gov/pubmed/9079422. Accessed 1 Jan 2014

    Article  CAS  PubMed  Google Scholar 

  51. Suzuki S, Suzuki N, Hayashibe M, Hattori A, Konishi K, Kakeji Y et al (2005) Tele-surgical simulation system for training in the use of da Vinci surgery. Stud Health Technol Inform 111:543–548 http://www.ncbi.nlm.nih.gov/pubmed/15718794. Accessed 1 Jan 2014

    PubMed  Google Scholar 

  52. Alrasheed T, Liu J, Hanasono MM, Butler CE, Selber JC (2014) Robotic microsurgery: validating an assessment tool and plotting the learning curve. Plast Reconstr Surg 134(4):794–803 http://www.ncbi.nlm.nih.gov/pubmed/25357037. Accessed 16 Sep 2015

    Article  CAS  PubMed  Google Scholar 

  53. Dulan G, Rege RV, Hogg DC, Gilberg-Fisher KM, Arain NA, Tesfay ST et al (2012) Developing a comprehensive, proficiency-based training program for robotic surgery. Surgery 152(3):477–488 http://www.ncbi.nlm.nih.gov/pubmed/22938907. Accessed 12 Jul 2015

    Article  PubMed  Google Scholar 

  54. Parekattil SJ, Moran ME (2010) Robotic instrumentation: evolution and microsurgical applications. Indian J Urol 26(3):395–403 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2978442&tool=pmcentrez&rendertype=abstract. Accessed 10 Jul 2015

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haribhakti, V.V. (2019). The Impact of Robotics in Head and Neck Reconstruction. In: Restoration, Reconstruction and Rehabilitation in Head and Neck Cancer. Springer, Singapore. https://doi.org/10.1007/978-981-13-2736-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2736-0_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2735-3

  • Online ISBN: 978-981-13-2736-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics