Novel Therapeutic Targets for Glaucoma: Disease Modification Treatment, Neuroprotection, and Neuroregeneration

  • Jacky Man Kwong Kwong
  • Iok-Hou PangEmail author


Current treatments for primary open-angle glaucoma, be they medication or surgery, only manage the symptom of ocular hypertension. They do not address the underlying mechanisms of pathogenesis or pathophysiology of the disease. Therefore, they do not alter the progression of the glaucomatous pathological changes. In contrast, this chapter explores potential therapeutic targets that aim to correct and/or reverse the pathological changes based on our understanding of the molecular and cellular mechanisms involved in the disorder. Therapies based on these targets, which are related to the trabecular meshwork, retina, or optic nerve, if proven successful, will revolutionize the treatment of this devastating blinding disease.


Glaucoma Therapy Therapeutic target Disease modification Neuroprotection Neurorescue Neuroregeneration 





Angiotensin-converting enzyme




Adipose tissue-derived mesenchymal stromal cell


Advanced Glaucoma Intervention Study


Adenomatosis polyposis coli


Angiotensin II type 1 receptor



BMP and activin membrane-bound inhibitor


Blood–brain barrier


Brain-derived neurotrophic factor


Bone morphogenic protein


Bone marrow-derived mesenchymal stromal cell


Brain-specific homeobox/POU domain protein


Collaborative Initial Glaucoma Treatment Study Trial


Casein kinase 1α


Central nervous system


Ciliary neurotrophic factor


Collaborative Normal Tension Glaucoma Study


Dental pulp-derived mesenchymal-like cell




Excitotoxic amino acid transporter 1


Extracellular matrix




Early Manifest Glaucoma Trial






Extracellular signal-regulated kinase




Endothelin A receptor


Endothelin B receptor


Fas ligand


Frizzled family receptors


Growth-associated protein-43




Glutamate/aspartate transporters


Glycogen synthase kinase


Heat shock factor


Heat shock protein




Intraocular pressure


c-Jun N-terminal kinase


L. barbarum polysaccharide


Lipoprotein receptor-related protein


Matrix metalloproteinase


Mesenchymal stromal cell


Nicotinic acetylcholine receptor


Nerve growth factor




Nicotinamide/nicotinic acid mononucleotide adenylyltransferase 1


Nitric oxide


Nitric oxide synthase


Olfactory ensheathing cell


Optic nerve head


Oxidative phosphorylation


p75 neurotrophin receptor


Pattern electroretinograph(y)


Primary open-angle glaucoma


Protein phosphatase 2A


Peripapillary sclera


Renin–angiotensin system


Retinal ganglion cell


Rho-associated coiled-coil protein kinase


Reactive oxygen species


Serum amyloid A


Secreted frizzled-related protein-1


T-cell factor/lymphoid enhancing factor


Mitochondrial transcription factor A


Transforming growth factor


Trabecular meshwork


Tumor necrosis factor


d-α-Tocopherol polyethylene glycol 1000 succinate


Tropomyosin-related kinase




Thioredoxin-interacting protein


  1. 1.
    Quigley HA, Addicks EM. Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. Arch Ophthalmol. 1981;99:137–43.PubMedCrossRefGoogle Scholar
  2. 2.
    Quigley HA. Neuronal death in glaucoma. Prog Retin Eye Res. 1999;18:39–57.PubMedCrossRefGoogle Scholar
  3. 3.
    Vranka JA, Kelley MJ, Acott TS, Keller KE. Extracellular matrix in the trabecular meshwork: intraocular pressure regulation and dysregulation in glaucoma. Exp Eye Res. 2015;133:112–25.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    O’Callaghan J, Cassidy PS, Humphries P. Open-angle glaucoma: therapeutically targeting the extracellular matrix of the conventional outflow pathway. Expert Opin Ther Targets. 2017;21:1037–50.PubMedCrossRefGoogle Scholar
  5. 5.
    Bermudez JY, Montecchi-Palmer M, Mao W, Clark AF. Cross-linked actin networks (CLANs) in glaucoma. Exp Eye Res. 2017;159:16–22.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Wang K, Read AT, Sulchek T, Ethier CR. Trabecular meshwork stiffness in glaucoma. Exp Eye Res. 2017;158:3–12.PubMedCrossRefGoogle Scholar
  7. 7.
    Tamm ER, Braunger BM, Fuchshofer R. Intraocular pressure and the mechanisms involved in resistance of the aqueous humor flow in the trabecular meshwork outflow pathways. Prog Mol Biol Transl Sci. 2015;134:301–14.PubMedCrossRefGoogle Scholar
  8. 8.
    Braunger BM, Fuchshofer R, Tamm ER. The aqueous humor outflow pathways in glaucoma: a unifying concept of disease mechanisms and causative treatment. Eur J Pharm Biopharm. 2015;95:173–81.PubMedCrossRefGoogle Scholar
  9. 9.
    Stone EM, Fingert JH, Alward WL, et al. Identification of a gene that causes primary open angle glaucoma. Science. 1997;275:668–70.PubMedCrossRefGoogle Scholar
  10. 10.
    Alward WL, Fingert JH, Coote MA, et al. Clinical features associated with mutations in the chromosome 1 open-angle glaucoma gene (GLC1A). N Engl J Med. 1998;338:1022–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Gould DB, Miceli-Libby L, Savinova OV, et al. Genetically increasing Myoc expression supports a necessary pathologic role of abnormal proteins in glaucoma. Mol Cell Biol. 2004;24:9019–25.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Kim BS, Savinova OV, Reedy MV, et al. Targeted disruption of the myocilin gene (Myoc) suggests that human glaucoma-causing mutations are gain of function. Mol Cell Biol. 2001;21:7707–13.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Jacobson N, Andrews M, Shepard AR, et al. Non-secretion of mutant proteins of the glaucoma gene myocilin in cultured trabecular meshwork cells and in aqueous humor. Hum Mol Genet. 2001;10:117–25.PubMedCrossRefGoogle Scholar
  14. 14.
    Shepard AR, Jacobson N, Millar JC, et al. Glaucoma-causing myocilin mutants require the Peroxisomal targeting signal-1 receptor (PTS1R) to elevate intraocular pressure. Hum Mol Genet. 2007;16:609–17.PubMedCrossRefGoogle Scholar
  15. 15.
    Zode GS, Bugge KE, Mohan K, et al. Topical ocular sodium 4-phenylbutyrate rescues glaucoma in a myocilin mouse model of primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2012;53:1557–65.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Zode GS, Kuehn MH, Nishimura DY, et al. Reduction of ER stress via a chemical chaperone prevents disease phenotypes in a mouse model of primary open angle glaucoma. J Clin Invest. 2011;121:3542–53.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Ozcan AA, Ozdemir N, Canataroglu A. The aqueous levels of TGF-beta2 in patients with glaucoma. Int Ophthalmol. 2004;25:19–22.PubMedCrossRefGoogle Scholar
  18. 18.
    Shepard AR, Millar JC, Pang IH, Jacobson N, Wang WH, Clark AF. Adenoviral gene transfer of active human transforming growth factor-{beta}2 elevates intraocular pressure and reduces outflow facility in rodent eyes. Invest Ophthalmol Vis Sci. 2010;51:2067–76.PubMedCrossRefGoogle Scholar
  19. 19.
    Gottanka J, Chan D, Eichhorn M, Lutjen-Drecoll E, Ethier CR. Effects of TGF-beta2 in perfused human eyes. Invest Ophthalmol Vis Sci. 2004;45:153–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Wordinger RJ, Clark AF. Bone morphogenetic proteins and their receptors in the eye. Exp Biol Med (Maywood). 2007;232:979–92.CrossRefGoogle Scholar
  21. 21.
    Fuchshofer R, Stephan DA, Russell P, Tamm ER. Gene expression profiling of TGFbeta2- and/or BMP7-treated trabecular meshwork cells: identification of Smad7 as a critical inhibitor of TGF-beta2 signaling. Exp Eye Res. 2009;88:1020–32.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Wordinger RJ, Fleenor DL, Hellberg PE, et al. Effects of TGF-beta2, BMP-4, and gremlin in the trabecular meshwork: implications for glaucoma. Invest Ophthalmol Vis Sci. 2007;48:1191–200.PubMedCrossRefGoogle Scholar
  23. 23.
    Fitzgerald AM, Benz C, Clark AF, Wordinger RJ. The effects of transforming growth factor-beta2 on the expression of follistatin and activin A in normal and glaucomatous human trabecular meshwork cells and tissues. Invest Ophthalmol Vis Sci. 2012;53:7358–69.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810.PubMedCrossRefGoogle Scholar
  25. 25.
    Mao W, Millar JC, Wang WH, et al. Existence of the canonical Wnt signaling pathway in the human trabecular meshwork. Invest Ophthalmol Vis Sci. 2012;53:7043–51.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Wang WH, McNatt LG, Pang IH, et al. Increased expression of the WNT antagonist sFRP-1 in glaucoma elevates intraocular pressure. J Clin Invest. 2008;118:1056–64.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Finch PW, He X, Kelley MJ, et al. Purification and molecular cloning of a secreted, Frizzled-related antagonist of Wnt action. Proc Natl Acad Sci U S A. 1997;94:6770–5.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Morgan JT, Raghunathan VK, Chang YR, Murphy CJ, Russell P. Wnt inhibition induces persistent increases in intrinsic stiffness of human trabecular meshwork cells. Exp Eye Res. 2015;132:174–8.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Webber HC, Bermudez JY, Sethi A, Clark AF, Mao W. Crosstalk between TGFbeta and Wnt signaling pathways in the human trabecular meshwork. Exp Eye Res. 2016;148:97–102.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Mao W, Rubin JS, Anoruo N, Wordinger RJ, Clark AF. SFRP1 promoter methylation and expression in human trabecular meshwork cells. Exp Eye Res. 2012;97:130–6.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Knepper PA, Goossens W, Mayanil CS. CD44H localization in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 1998;39:673–80.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Giovingo M, Nolan M, McCarty R, et al. sCD44 overexpression increases intraocular pressure and aqueous outflow resistance. Mol Vis. 2013;19:2151–64.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Wang WH, McNatt LG, Pang IH, et al. Increased expression of serum amyloid A in glaucoma and its effect on intraocular pressure. Invest Ophthalmol Vis Sci. 2008;49:1916–23.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Takai Y, Tanito M, Ohira A. Multiplex cytokine analysis of aqueous humor in eyes with primary open-angle glaucoma, exfoliation glaucoma, and cataract. Invest Ophthalmol Vis Sci. 2012;53:241–7.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Furlaneto CJ, Campa A. A novel function of serum amyloid A: a potent stimulus for the release of tumor necrosis factor-alpha, interleukin-1beta, and interleukin-8 by human blood neutrophil. Biochem Biophys Res Commun. 2000;268:405–8.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Ribeiro FP, Furlaneto CJ, Hatanaka E, et al. mRNA expression and release of interleukin-8 induced by serum amyloid A in neutrophils and monocytes. Mediators Inflamm. 2003;12:173–8.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Bhattacharya SK, Rockwood EJ, Smith SD, et al. Proteomics reveal Cochlin deposits associated with glaucomatous trabecular meshwork. J Biol Chem. 2005;280:6080–4.PubMedCrossRefGoogle Scholar
  38. 38.
    Lee ES, Gabelt BT, Faralli JA, et al. COCH transgene expression in cultured human trabecular meshwork cells and its effect on outflow facility in monkey organ cultured anterior segments. Invest Ophthalmol Vis Sci. 2010;51:2060–6.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Bhattacharya SK, Gabelt BT, Ruiz J, Picciani R, Kaufman PL. Cochlin expression in anterior segment organ culture models after TGFbeta2 treatment. Invest Ophthalmol Vis Sci. 2009;50:551–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Goel M, Sienkiewicz AE, Picciani R, Lee RK, Bhattacharya SK. Cochlin induced TREK-1 co-expression and annexin A2 secretion: role in trabecular meshwork cell elongation and motility. PLoS One. 2011;6:e23070.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Carreon TA, Castellanos A, Gasull X, Bhattacharya SK. Erratum: interaction of cochlin and mechanosensitive channel TREK-1 in trabecular meshwork cells influences the regulation of intraocular pressure. Sci Rep. 2017;7:6430.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Peters D, Bengtsson B, Heijl A. Factors associated with lifetime risk of open-angle glaucoma blindness. Acta Ophthalmol. 2014;92:421–5.PubMedCrossRefGoogle Scholar
  43. 43.
    Malihi M, Moura Filho ER, Hodge DO, Sit AJ. Long-term trends in glaucoma-related blindness in Olmsted County, Minnesota. Ophthalmology. 2014;121:134–41.PubMedCrossRefGoogle Scholar
  44. 44.
    AGIS. The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. The AGIS Investigators. Am J Ophthalmol. 2000;130:429–40.CrossRefGoogle Scholar
  45. 45.
    CNTG. Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Collaborative Normal-Tension Glaucoma Study Group. Am J Ophthalmol. 1998;126:487–97.CrossRefGoogle Scholar
  46. 46.
    Lichter PR, Musch DC, Gillespie BW, et al. Interim clinical outcomes in the Collaborative Initial Glaucoma Treatment Study comparing initial treatment randomized to medications or surgery. Ophthalmology. 2001;108:1943–53.PubMedCrossRefGoogle Scholar
  47. 47.
    Heijl A, Leske MC, Bengtsson B, Hyman L, Bengtsson B, Hussein M. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol. 2002;120:1268–79.PubMedCrossRefGoogle Scholar
  48. 48.
    Friedman DS, Wilson MR, Liebmann JM, Fechtner RD, Weinreb RN. An evidence-based assessment of risk factors for the progression of ocular hypertension and glaucoma. Am J Ophthalmol. 2004;138:S19–31.PubMedCrossRefGoogle Scholar
  49. 49.
    Nickells RW. The cell and molecular biology of glaucoma: mechanisms of retinal ganglion cell death. Invest Ophthalmol Vis Sci. 2012;53:2476–81.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Whitmore AV, Libby RT, John SW. Glaucoma: thinking in new ways-a role for autonomous axonal self-destruction and other compartmentalised processes? Prog Retin Eye Res. 2005;24:639–62.PubMedCrossRefGoogle Scholar
  51. 51.
    Garcia-Valenzuela E, Shareef S, Walsh J, Sharma SC. Programmed cell death of retinal ganglion cells during experimental glaucoma. Exp Eye Res. 1995;61:33–44.PubMedCrossRefGoogle Scholar
  52. 52.
    Kerrigan LA, Zack DJ, Quigley HA, Smith SD, Pease ME. TUNEL-positive ganglion cells in human primary open-angle glaucoma. Arch Ophthalmol. 1997;115:1031–5.PubMedCrossRefGoogle Scholar
  53. 53.
    Almasieh M, Wilson AM, Morquette B, et al. The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res. 2012;31:152–81.PubMedCrossRefGoogle Scholar
  54. 54.
    Baltmr A, Duggan J, Nizari S, Salt TE, Cordeiro MF. Neuroprotection in glaucoma - is there a future role? Exp Eye Res. 2010;91:554–66.PubMedCrossRefGoogle Scholar
  55. 55.
    Quigley HA. Clinical trials for glaucoma neuroprotection are not impossible. Curr Opin Ophthalmol. 2012;23:144–54.PubMedCrossRefGoogle Scholar
  56. 56.
    Liu Y, Pang IH. Challenges in the development of glaucoma neuroprotection therapy. Cell Tissue Res. 2013;353:253–60.PubMedCrossRefGoogle Scholar
  57. 57.
    Lukasiewicz PD. Synaptic mechanisms that shape visual signaling at the inner retina. Prog Brain Res. 2005;147:205–18.PubMedCrossRefGoogle Scholar
  58. 58.
    Peng YW, Blackstone CD, Huganir RL, Yau KW. Distribution of glutamate receptor subtypes in the vertebrate retina. Neuroscience. 1995;66:483–97.PubMedCrossRefGoogle Scholar
  59. 59.
    Lucas DR, Newhouse JP. The toxic effect of sodium L-glutamate on the inner layers of the retina. AMA Arch Ophthalmol. 1957;58:193–201.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Olney JW. Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science. 1969;164:719–21.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Meldrum B, Garthwaite J. Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol Sci. 1990;11:379–87.CrossRefGoogle Scholar
  62. 62.
    Lipton SA. Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat Rev Drug Discov. 2006;5:160–70.PubMedCrossRefGoogle Scholar
  63. 63.
    Derouiche A, Rauen T. Coincidence of L-glutamate/L-aspartate transporter (GLAST) and glutamine synthetase (GS) immunoreactions in retinal glia: evidence for coupling of GLAST and GS in transmitter clearance. J Neurosci Res. 1995;42:131–43.PubMedCrossRefGoogle Scholar
  64. 64.
    Iwamoto K, Birkholz P, Schipper A, Mata D, Linn DM, Linn CL. A nicotinic acetylcholine receptor agonist prevents loss of retinal ganglion cells in a glaucoma model. Invest Ophthalmol Vis Sci. 2014;55:1078–87.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Mata D, Linn DM, Linn CL. Retinal ganglion cell neuroprotection induced by activation of alpha7 nicotinic acetylcholine receptors. Neuropharmacology. 2015;99:337–46.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Zhou X, Cheng Y, Zhang R, et al. Alpha7 nicotinic acetylcholine receptor agonist promotes retinal ganglion cell function via modulating GABAergic presynaptic activity in a chronic glaucomatous model. Sci Rep. 2017;7:1734.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Zhou X, Zong Y, Zhang R, et al. Differential modulation of GABAA and NMDA receptors by an alpha7-nicotinic acetylcholine receptor agonist in chronic glaucoma. Front Mol Neurosci. 2017;10:422.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Almasieh M, Zhou Y, Kelly ME, Casanova C, Di Polo A. Structural and functional neuroprotection in glaucoma: role of galantamine-mediated activation of muscarinic acetylcholine receptors. Cell Death Dis. 2010;1:e27.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Stitt AW, Chakravarthy U, Gardiner TA, Archer DB. Endothelin-like immunoreactivity and receptor binding in the choroid and retina. Curr Eye Res. 1996;15:111–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Sugiyama T, Moriya S, Oku H, Azuma I. Association of endothelin-1 with normal tension glaucoma: clinical and fundamental studies. Surv Ophthalmol. 1995;39(Suppl 1):S49–56.PubMedCrossRefGoogle Scholar
  71. 71.
    Polak K, Petternel V, Luksch A, et al. Effect of endothelin and BQ123 on ocular blood flow parameters in healthy subjects. Invest Ophthalmol Vis Sci. 2001;42:2949–56.PubMedGoogle Scholar
  72. 72.
    Cioffi GA, Wang L, Fortune B, et al. Chronic ischemia induces regional axonal damage in experimental primate optic neuropathy. Arch Ophthalmol. 2004;122:1517–25.PubMedCrossRefGoogle Scholar
  73. 73.
    MacCumber MW, D’Anna SA. Endothelin receptor-binding subtypes in the human retina and choroid. Arch Ophthalmol. 1994;112:1231–5.PubMedCrossRefGoogle Scholar
  74. 74.
    Stokely ME, Brady ST, Yorio T. Effects of endothelin-1 on components of anterograde axonal transport in optic nerve. Invest Ophthalmol Vis Sci. 2002;43:3223–30.PubMedGoogle Scholar
  75. 75.
    Prasanna G, Krishnamoorthy R, Clark AF, Wordinger RJ, Yorio T. Human optic nerve head astrocytes as a target for endothelin-1. Invest Ophthalmol Vis Sci. 2002;43:2704–13.PubMedGoogle Scholar
  76. 76.
    Howell GR, MacNicoll KH, Braine CE, et al. Combinatorial targeting of early pathways profoundly inhibits neurodegeneration in a mouse model of glaucoma. Neurobiol Dis. 2014;71:44–52.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Rosenthal R, Fromm M. Endothelin antagonism as an active principle for glaucoma therapy. Br J Pharmacol. 2011;162:806–16.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Anderson DR, Hendrickson A. Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve. Invest Ophthalmol. 1974;13:771–83.PubMedGoogle Scholar
  79. 79.
    Quigley HA, Guy J, Anderson DR. Blockade of rapid axonal transport. Effect of intraocular pressure elevation in primate optic nerve. Arch Ophthalmol. 1979;97:525–31.PubMedCrossRefGoogle Scholar
  80. 80.
    Quigley HA, Addicks EM, Green WR, Maumenee AE. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol. 1981;99:635–49.PubMedCrossRefGoogle Scholar
  81. 81.
    Osborne NN, Nunez-Alvarez C, Joglar B, Del Olmo-Aguado S. Glaucoma: focus on mitochondria in relation to pathogenesis and neuroprotection. Eur J Pharmacol. 2016;787:127–33.PubMedCrossRefGoogle Scholar
  82. 82.
    Williams PA, Harder JM, Foxworth NE, et al. Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice. Science. 2017;355:756–60.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Qu J, Kaufman Y, Washington I. Coenzyme Q10 in the human retina. Invest Ophthalmol Vis Sci. 2009;50:1814–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Lee D, Shim MS, Kim KY, et al. Coenzyme Q10 inhibits glutamate excitotoxicity and oxidative stress-mediated mitochondrial alteration in a mouse model of glaucoma. Invest Ophthalmol Vis Sci. 2014;55:993–1005.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Davis BM, Tian K, Pahlitzsch M, et al. Topical Coenzyme Q10 demonstrates mitochondrial-mediated neuroprotection in a rodent model of ocular hypertension. Mitochondrion. 2017;36:114–23.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Tezel G. Oxidative stress in glaucomatous neurodegeneration: mechanisms and consequences. Prog Retin Eye Res. 2006;25:490–513.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Osborne NN, del Olmo-Aguado S. Maintenance of retinal ganglion cell mitochondrial functions as a neuroprotective strategy in glaucoma. Curr Opin Pharmacol. 2013;13:16–22.PubMedCrossRefGoogle Scholar
  88. 88.
    Osborne NN, Chidlow G, Layton CJ, Wood JP, Casson RJ, Melena J. Optic nerve and neuroprotection strategies. Eye (Lond). 2004;18:1075–84.CrossRefGoogle Scholar
  89. 89.
    Lascaratos G, Garway-Heath DF, Willoughby CE, Chau KY, Schapira AH. Mitochondrial dysfunction in glaucoma: understanding genetic influences. Mitochondrion. 2012;12:202–12.PubMedCrossRefGoogle Scholar
  90. 90.
    Ramdas WD, Wolfs RC, Kiefte-de Jong JC, et al. Nutrient intake and risk of open-angle glaucoma: the Rotterdam Study. Eur J Epidemiol. 2012;27:385–93.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Carelli V, La Morgia C, Valentino ML, et al. Idebenone treatment in Leber’s hereditary optic neuropathy. Brain. 2011;134:e188.PubMedCrossRefGoogle Scholar
  92. 92.
    Murphy MP, Smith RA. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol. 2007;47:629–56.PubMedCrossRefGoogle Scholar
  93. 93.
    Reddy PH. Mitochondrial medicine for aging and neurodegenerative diseases. Neuromolecular Med. 2008;10:291–315.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Moeller SM, Jacques PF, Blumberg JB. The potential role of dietary xanthophylls in cataract and age-related macular degeneration. J Am Coll Nutr. 2000;19:522S–7S.PubMedCrossRefGoogle Scholar
  95. 95.
    Gale CR, Hall NF, Phillips DI, Martyn CN. Lutein and zeaxanthin status and risk of age-related macular degeneration. Invest Ophthalmol Vis Sci. 2003;44:2461–5.PubMedCrossRefGoogle Scholar
  96. 96.
    Thomson LR, Toyoda Y, Langner A, et al. Elevated retinal zeaxanthin and prevention of light-induced photoreceptor cell death in quail. Invest Ophthalmol Vis Sci. 2002;43:3538–49.PubMedGoogle Scholar
  97. 97.
    Chucair AJ, Rotstein NP, Sangiovanni JP, During A, Chew EY, Politi LE. Lutein and zeaxanthin protect photoreceptors from apoptosis induced by oxidative stress: relation with docosahexaenoic acid. Invest Ophthalmol Vis Sci. 2007;48:5168–77.PubMedCrossRefGoogle Scholar
  98. 98.
    Chan HC, Chang RC, Koon-Ching Ip A, et al. Neuroprotective effects of Lycium barbarum Lynn on protecting retinal ganglion cells in an ocular hypertension model of glaucoma. Exp Neurol. 2007;203:269–73.PubMedCrossRefGoogle Scholar
  99. 99.
    Mi XS, Chiu K, Van G, et al. Effect of Lycium barbarum polysaccharides on the expression of endothelin-1 and its receptors in an ocular hypertension model of rat glaucoma. Neural Regen Res. 2012;7:645–51.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Chiu K, Zhou Y, Yeung SC, et al. Up-regulation of crystallins is involved in the neuroprotective effect of wolfberry on survival of retinal ganglion cells in rat ocular hypertension model. J Cell Biochem. 2010;110:311–20.PubMedGoogle Scholar
  101. 101.
    Hirooka K, Tokuda M, Miyamoto O, Itano T, Baba T, Shiraga F. The Ginkgo biloba extract (EGb 761) provides a neuroprotective effect on retinal ganglion cells in a rat model of chronic glaucoma. Curr Eye Res. 2004;28:153–7.PubMedCrossRefGoogle Scholar
  102. 102.
    Zhang B, Osborne NN. Oxidative-induced retinal degeneration is attenuated by epigallocatechin gallate. Brain Res. 2006;1124:176–87.PubMedCrossRefGoogle Scholar
  103. 103.
    Zhang B, Rusciano D, Osborne NN. Orally administered epigallocatechin gallate attenuates retinal neuronal death in vivo and light-induced apoptosis in vitro. Brain Res. 2008;1198:141–52.PubMedCrossRefGoogle Scholar
  104. 104.
    Shen C, Chen L, Jiang L, Lai TY. Neuroprotective effect of epigallocatechin-3-gallate in a mouse model of chronic glaucoma. Neurosci Lett. 2015;600:132–6.PubMedCrossRefGoogle Scholar
  105. 105.
    Neufeld AH, Sawada A, Becker B. Inhibition of nitric-oxide synthase 2 by aminoguanidine provides neuroprotection of retinal ganglion cells in a rat model of chronic glaucoma. Proc Natl Acad Sci U S A. 1999;96:9944–8.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Pang IH, Johnson EC, Jia L, et al. Evaluation of inducible nitric oxide synthase in glaucomatous optic neuropathy and pressure-induced optic nerve damage. Invest Ophthalmol Vis Sci. 2005;46:1313–21.PubMedCrossRefGoogle Scholar
  107. 107.
    Dai Y, Weinreb RN, Kim KY, et al. Inducible nitric oxide synthase-mediated alteration of mitochondrial OPA1 expression in ocular hypertensive rats. Invest Ophthalmol Vis Sci. 2011;52:2468–76.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Munemasa Y, Kwong JM, Kim SH, Ahn JH, Caprioli J, Piri N. Thioredoxins 1 and 2 protect retinal ganglion cells from pharmacologically induced oxidative stress, optic nerve transection and ocular hypertension. Adv Exp Med Biol. 2010;664:355–63.PubMedCrossRefGoogle Scholar
  109. 109.
    Munemasa Y, Ahn JH, Kwong JM, Caprioli J, Piri N. Redox proteins thioredoxin 1 and thioredoxin 2 support retinal ganglion cell survival in experimental glaucoma. Gene Ther. 2009;16:17–25.PubMedCrossRefGoogle Scholar
  110. 110.
    Piri N, Kwong JM, Gu L, Caprioli J. Heat shock proteins in the retina: focus on HSP70 and alpha crystallins in ganglion cell survival. Prog Retin Eye Res. 2016;52:22–46.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Ishii Y, Kwong JM, Caprioli J. Retinal ganglion cell protection with geranylgeranylacetone, a heat shock protein inducer, in a rat glaucoma model. Invest Ophthalmol Vis Sci. 2003;44:1982–92.PubMedCrossRefGoogle Scholar
  112. 112.
    Dong Z, Shinmei Y, Dong Y, et al. Effect of geranylgeranylacetone on the protection of retinal ganglion cells in a mouse model of normal tension glaucoma. Heliyon. 2016;2:e00191.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Kwong JM, Gu L, Nassiri N, et al. AAV-mediated and pharmacological induction of Hsp70 expression stimulates survival of retinal ganglion cells following axonal injury. Gene Ther. 2015;22:138–45.PubMedCrossRefGoogle Scholar
  114. 114.
    Horwitz J. Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci U S A. 1992;89:10449–53.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Piri N, Kwong JM, Caprioli J. Crystallins in retinal ganglion cell survival and regeneration. Mol Neurobiol. 2013;48:819–28.PubMedCrossRefGoogle Scholar
  116. 116.
    Piri N, Song M, Kwong JM, Caprioli J. Modulation of alpha and beta crystallin expression in rat retinas with ocular hypertension-induced ganglion cell degeneration. Brain Res. 2007;1141:1–9.PubMedCrossRefGoogle Scholar
  117. 117.
    Munemasa Y, Kwong JM, Caprioli J, Piri N. The role of alphaA- and alphaB-crystallins in the survival of retinal ganglion cells after optic nerve axotomy. Invest Ophthalmol Vis Sci. 2009;50:3869–75.PubMedCrossRefGoogle Scholar
  118. 118.
    Thanos S, Bohm MR, Schallenberg M, Oellers P. Traumatology of the optic nerve and contribution of crystallins to axonal regeneration. Cell Tissue Res. 2012;349:49–69.PubMedCrossRefGoogle Scholar
  119. 119.
    McKinnon SJ. Glaucoma: ocular Alzheimer’s disease? Front Biosci. 2003;8:s1140–56.PubMedCrossRefGoogle Scholar
  120. 120.
    Yoneda S, Hara H, Hirata A, Fukushima M, Inomata Y, Tanihara H. Vitreous fluid levels of beta-amyloid((1-42)) and tau in patients with retinal diseases. Jpn J Ophthalmol. 2005;49:106–8.PubMedCrossRefGoogle Scholar
  121. 121.
    Guo L, Salt TE, Luong V, et al. Targeting amyloid-beta in glaucoma treatment. Proc Natl Acad Sci U S A. 2007;104:13444–9.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Gazit E. Mechanisms of amyloid fibril self-assembly and inhibition. Model short peptides as a key research tool. FEBS J. 2005;272:5971–8.PubMedCrossRefGoogle Scholar
  123. 123.
    Salt TE, Nizari S, Cordeiro MF, Russ H, Danysz W. Effect of the Abeta aggregation modulator MRZ-99030 on retinal damage in an animal model of glaucoma. Neurotox Res. 2014;26:440–6.PubMedCrossRefGoogle Scholar
  124. 124.
    Amor S, Peferoen LA, Vogel DY, et al. Inflammation in neurodegenerative diseases--an update. Immunology. 2014;142:151–66.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Vivekanantham S, Shah S, Dewji R, Dewji A, Khatri C, Ologunde R. Neuroinflammation in Parkinson’s disease: role in neurodegeneration and tissue repair. Int J Neurosci. 2015;125:717–25.PubMedCrossRefGoogle Scholar
  126. 126.
    Benhar I, London A, Schwartz M. The privileged immunity of immune privileged organs: the case of the eye. Front Immunol. 2012;3:296.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Wax MB, Barrett DA, Pestronk A. Increased incidence of paraproteinemia and autoantibodies in patients with normal-pressure glaucoma. Am J Ophthalmol. 1994;117:561–8.PubMedCrossRefGoogle Scholar
  128. 128.
    Tezel G, Seigel GM, Wax MB. Autoantibodies to small heat shock proteins in glaucoma. Invest Ophthalmol Vis Sci. 1998;39:2277–87.PubMedGoogle Scholar
  129. 129.
    Yang J, Tezel G, Patil RV, Romano C, Wax MB. Serum autoantibody against glutathione S-transferase in patients with glaucoma. Invest Ophthalmol Vis Sci. 2001;42:1273–6.PubMedGoogle Scholar
  130. 130.
    Wax MB, Yang J, Tezel G. Serum autoantibodies in patients with glaucoma. J Glaucoma. 2001;10:S22–4.PubMedCrossRefGoogle Scholar
  131. 131.
    Wax MB, Tezel G, Yang J, et al. Induced autoimmunity to heat shock proteins elicits glaucomatous loss of retinal ganglion cell neurons via activated T-cell-derived fas-ligand. J Neurosci. 2008;28:12085–96.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Howell GR, Macalinao DG, Sousa GL, et al. Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. J Clin Invest. 2011;121:1429–44.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Kim HS, Suh YH. Minocycline and neurodegenerative diseases. Behav Brain Res. 2009;196:168–79.PubMedCrossRefGoogle Scholar
  134. 134.
    Levkovitch-Verbin H, Waserzoog Y, Vander S, Makarovsky D, Piven I. Minocycline upregulates pro-survival genes and downregulates pro-apoptotic genes in experimental glaucoma. Graefes Arch Clin Exp Ophthalmol. 2014;252:761–72.PubMedCrossRefGoogle Scholar
  135. 135.
    Bordone MP, Gonzalez Fleitas MF, Pasquini LA, et al. Involvement of microglia in early axoglial alterations of the optic nerve induced by experimental glaucoma. J Neurochem. 2017;142:323–37.PubMedCrossRefGoogle Scholar
  136. 136.
    Bosco A, Inman DM, Steele MR, et al. Reduced retina microglial activation and improved optic nerve integrity with minocycline treatment in the DBA/2J mouse model of glaucoma. Invest Ophthalmol Vis Sci. 2008;49:1437–46.PubMedCrossRefGoogle Scholar
  137. 137.
    Yang Z, Quigley HA, Pease ME, et al. Changes in gene expression in experimental glaucoma and optic nerve transection: the equilibrium between protective and detrimental mechanisms. Invest Ophthalmol Vis Sci. 2007;48:5539–48.PubMedCrossRefGoogle Scholar
  138. 138.
    Yuan L, Neufeld AH. Tumor necrosis factor-alpha: a potentially neurodestructive cytokine produced by glia in the human glaucomatous optic nerve head. Glia. 2000;32:42–50.PubMedCrossRefGoogle Scholar
  139. 139.
    Yang X, Luo C, Cai J, et al. Neurodegenerative and inflammatory pathway components linked to TNF-alpha/TNFR1 signaling in the glaucomatous human retina. Invest Ophthalmol Vis Sci. 2011;52:8442–54.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Roh M, Zhang Y, Murakami Y, et al. Etanercept, a widely used inhibitor of tumor necrosis factor-alpha (TNF-alpha), prevents retinal ganglion cell loss in a rat model of glaucoma. PLoS One. 2012;7:e40065.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Krishnan A, Fei F, Jones A, et al. Overexpression of soluble Fas ligand following adeno-associated virus gene therapy prevents retinal ganglion cell death in chronic and acute murine models of glaucoma. J Immunol. 2016;197:4626–38.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Bakalash S, Kessler A, Mizrahi T, Nussenblatt R, Schwartz M. Antigenic specificity of immunoprotective therapeutic vaccination for glaucoma. Invest Ophthalmol Vis Sci. 2003;44:3374–81.PubMedCrossRefGoogle Scholar
  143. 143.
    Bakalash S, Ben-Shlomo G, Aloni E, et al. T-cell-based vaccination for morphological and functional neuroprotection in a rat model of chronically elevated intraocular pressure. J Mol Med (Berl). 2005;83:904–16.CrossRefGoogle Scholar
  144. 144.
    Bakalash S, Pham M, Koronyo Y, et al. Egr1 expression is induced following glatiramer acetate immunotherapy in rodent models of glaucoma and Alzheimer’s disease. Invest Ophthalmol Vis Sci. 2011;52:9033–46.PubMedCrossRefGoogle Scholar
  145. 145.
    Schori H, Kipnis J, Yoles E, et al. Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxicity and ocular hypertension: implications for glaucoma. Proc Natl Acad Sci U S A. 2001;98:3398–403.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Radius RL, Anderson DR. Rapid axonal transport in primate optic nerve. Distribution of pressure-induced interruption. Arch Ophthalmol. 1981;99:650–4.PubMedCrossRefGoogle Scholar
  147. 147.
    Dandona L, Hendrickson A, Quigley HA. Selective effects of experimental glaucoma on axonal transport by retinal ganglion cells to the dorsal lateral geniculate nucleus. Invest Ophthalmol Vis Sci. 1991;32:1593–9.PubMedGoogle Scholar
  148. 148.
    Gaasterland D, Tanishima T, Kuwabara T. Axoplasmic flow during chronic experimental glaucoma. 1. Light and electron microscopic studies of the monkey optic nervehead during development of glaucomatous cupping. Invest Ophthalmol Vis Sci. 1978;17:838–46.PubMedGoogle Scholar
  149. 149.
    Pease ME, McKinnon SJ, Quigley HA, Kerrigan-Baumrind LA, Zack DJ. Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma. Invest Ophthalmol Vis Sci. 2000;41:764–74.PubMedGoogle Scholar
  150. 150.
    Quigley HA, McKinnon SJ, Zack DJ, et al. Retrograde axonal transport of BDNF in retinal ganglion cells is blocked by acute IOP elevation in rats. Invest Ophthalmol Vis Sci. 2000;41:3460–6.PubMedGoogle Scholar
  151. 151.
    Martin KR, Quigley HA, Valenta D, Kielczewski J, Pease ME. Optic nerve dynein motor protein distribution changes with intraocular pressure elevation in a rat model of glaucoma. Exp Eye Res. 2006;83:255–62.PubMedCrossRefGoogle Scholar
  152. 152.
    Martin KR, Quigley HA, Zack DJ, et al. Gene therapy with brain-derived neurotrophic factor as a protection: retinal ganglion cells in a rat glaucoma model. Invest Ophthalmol Vis Sci. 2003;44:4357–65.PubMedCrossRefGoogle Scholar
  153. 153.
    Fu QL, Li X, Yip HK, et al. Combined effect of brain-derived neurotrophic factor and LINGO-1 fusion protein on long-term survival of retinal ganglion cells in chronic glaucoma. Neuroscience. 2009;162:375–82.PubMedCrossRefGoogle Scholar
  154. 154.
    Colafrancesco V, Parisi V, Sposato V, et al. Ocular application of nerve growth factor protects degenerating retinal ganglion cells in a rat model of glaucoma. J Glaucoma. 2011;20:100–8.PubMedCrossRefGoogle Scholar
  155. 155.
    Lambiase A, Aloe L, Centofanti M, et al. Experimental and clinical evidence of neuroprotection by nerve growth factor eye drops: implications for glaucoma. Proc Natl Acad Sci U S A. 2009;106:13469–74.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Mi S, Lee X, Shao Z, et al. LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci. 2004;7:221–8.PubMedCrossRefGoogle Scholar
  157. 157.
    Shao Z, Browning JL, Lee X, et al. TAJ/TROY, an orphan TNF receptor family member, binds Nogo-66 receptor 1 and regulates axonal regeneration. Neuron. 2005;45:353–9.PubMedCrossRefGoogle Scholar
  158. 158.
    Johnson TV, Bull ND, Martin KR. Neurotrophic factor delivery as a protective treatment for glaucoma. Exp Eye Res. 2011;93:196–203.PubMedCrossRefGoogle Scholar
  159. 159.
    Kimura A, Namekata K, Guo X, Harada C, Harada T. Neuroprotection, growth factors and BDNF-TrkB signalling in retinal degeneration. Int J Mol Sci. 2016;17:1584.PubMedCentralCrossRefPubMedGoogle Scholar
  160. 160.
    Ji JZ, Elyaman W, Yip HK, et al. CNTF promotes survival of retinal ganglion cells after induction of ocular hypertension in rats: the possible involvement of STAT3 pathway. Eur J Neurosci. 2004;19:265–72.PubMedCrossRefGoogle Scholar
  161. 161.
    Pease ME, Zack DJ, Berlinicke C, et al. Effect of CNTF on retinal ganglion cell survival in experimental glaucoma. Invest Ophthalmol Vis Sci. 2009;50:2194–200.PubMedCrossRefGoogle Scholar
  162. 162.
    Maes ME, Schlamp CL, Nickells RW. BAX to basics: how the BCL2 gene family controls the death of retinal ganglion cells. Prog Retin Eye Res. 2017;57:1–25.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    McKinnon SJ, Lehman DM, Tahzib NG, et al. Baculoviral IAP repeat-containing-4 protects optic nerve axons in a rat glaucoma model. Mol Ther. 2002;5:780–7.PubMedCrossRefGoogle Scholar
  164. 164.
    Choudhury S, Liu Y, Clark AF, Pang IH. Caspase-7: a critical mediator of optic nerve injury-induced retinal ganglion cell death. Mol Neurodegener. 2015;10:40.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Kitaoka Y, Munemasa Y, Kojima K, Hirano A, Ueno S, Takagi H. Axonal protection by Nmnat3 overexpression with involvement of autophagy in optic nerve degeneration. Cell Death Dis. 2013;4:e860.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Stowell C, Burgoyne CF, Tamm ER, Ethier CR. Biomechanical aspects of axonal damage in glaucoma: a brief review. Exp Eye Res. 2017;157:13–9.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Yang H, Reynaud J, Lockwood H, et al. The connective tissue phenotype of glaucomatous cupping in the monkey eye - clinical and research implications. Prog Retin Eye Res. 2017;59:1–52.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Johnson EC, Jia L, Cepurna WO, Doser TA, Morrison JC. Global changes in optic nerve head gene expression after exposure to elevated intraocular pressure in a rat glaucoma model. Invest Ophthalmol Vis Sci. 2007;48:3161–77.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Oglesby EN, Tezel G, Cone-Kimball E, et al. Scleral fibroblast response to experimental glaucoma in mice. Mol Vis. 2016;22:82–99.PubMedPubMedCentralGoogle Scholar
  170. 170.
    Quigley HA, Pitha IF, Welsbie DS, et al. Losartan treatment protects retinal ganglion cells and alters scleral remodeling in experimental glaucoma. PLoS One. 2015;10:e0141137.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Ackerley S, Grierson AJ, Banner S, et al. p38alpha stress-activated protein kinase phosphorylates neurofilaments and is associated with neurofilament pathology in amyotrophic lateral sclerosis. Mol Cell Neurosci. 2004;26:354–64.PubMedCrossRefGoogle Scholar
  172. 172.
    Munoz L, Ammit AJ. Targeting p38 MAPK pathway for the treatment of Alzheimer’s disease. Neuropharmacology. 2010;58:561–8.PubMedCrossRefGoogle Scholar
  173. 173.
    Dapper JD, Crish SD, Pang IH, Calkins DJ. Proximal inhibition of p38 MAPK stress signaling prevents distal axonopathy. Neurobiol Dis. 2013;59:26–37.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Munemasa Y, Ohtani-Kaneko R, Kitaoka Y, et al. Contribution of mitogen-activated protein kinases to NMDA-induced neurotoxicity in the rat retina. Brain Res. 2005;1044:227–40.PubMedCrossRefGoogle Scholar
  175. 175.
    Munemasa Y, Ohtani-Kaneko R, Kitaoka Y, et al. Pro-apoptotic role of c-Jun in NMDA-induced neurotoxicity in the rat retina. J Neurosci Res. 2006;83:907–18.PubMedCrossRefGoogle Scholar
  176. 176.
    Sun H, Wang Y, Pang IH, et al. Protective effect of a JNK inhibitor against retinal ganglion cell loss induced by acute moderate ocular hypertension. Mol Vis. 2011;17:864–75.PubMedPubMedCentralGoogle Scholar
  177. 177.
    Kim BJ, Silverman SM, Liu Y, Wordinger RJ, Pang IH, Clark AF. In vitro and in vivo neuroprotective effects of cJun N-terminal kinase inhibitors on retinal ganglion cells. Mol Neurodegener. 2016;11:30.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Syc-Mazurek SB, Fernandes KA, Libby RT. JUN is important for ocular hypertension-induced retinal ganglion cell degeneration. Cell Death Dis. 2017;8:e2945.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Xiang M, Zhou L, Macke JP, et al. The Brn-3 family of POU-domain factors: primary structure, binding specificity, and expression in subsets of retinal ganglion cells and somatosensory neurons. J Neurosci. 1995;15:4762–85.PubMedCrossRefGoogle Scholar
  180. 180.
    Wang SW, Gan L, Martin SE, Klein WH. Abnormal polarization and axon outgrowth in retinal ganglion cells lacking the POU-domain transcription factor Brn-3b. Mol Cell Neurosci. 2000;16:141–56.PubMedCrossRefGoogle Scholar
  181. 181.
    Gan L, Xiang M, Zhou L, Wagner DS, Klein WH, Nathans J. POU domain factor Brn-3b is required for the development of a large set of retinal ganglion cells. Proc Natl Acad Sci U S A. 1996;93:3920–5.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Stankowska DL, Minton AZ, Rutledge MA, et al. Neuroprotective effects of transcription factor Brn3b in an ocular hypertension rat model of glaucoma. Invest Ophthalmol Vis Sci. 2015;56:893–907.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Phatak NR, Stankowska DL, Krishnamoorthy RR. Bcl-2, Bcl-xL, and p-AKT are involved in neuroprotective effects of transcription factor Brn3b in an ocular hypertension rat model of glaucoma. Mol Vis. 2016;22:1048–61.PubMedPubMedCentralGoogle Scholar
  184. 184.
    Prokosch V, Panagis L, Volk GF, Dermon C, Thanos S. Alpha2-adrenergic receptors and their core involvement in the process of axonal growth in retinal explants. Invest Ophthalmol Vis Sci. 2010;51:6688–99.PubMedCrossRefGoogle Scholar
  185. 185.
    Gao H, Qiao X, Cantor LB, WuDunn D. Up-regulation of brain-derived neurotrophic factor expression by brimonidine in rat retinal ganglion cells. Arch Ophthalmol. 2002;120:797–803.PubMedCrossRefGoogle Scholar
  186. 186.
    Donello JE, Padillo EU, Webster ML, Wheeler LA, Gil DW. alpha(2)-Adrenoceptor agonists inhibit vitreal glutamate and aspartate accumulation and preserve retinal function after transient ischemia. J Pharmacol Exp Ther. 2001;296:216–23.PubMedGoogle Scholar
  187. 187.
    Yoles E, Wheeler LA, Schwartz M. Alpha2-adrenoreceptor agonists are neuroprotective in a rat model of optic nerve degeneration. Invest Ophthalmol Vis Sci. 1999;40:65–73.PubMedGoogle Scholar
  188. 188.
    Ruiz Lapuente C, Ruiz Lapuente A, Link B. Influence of topical brimonidine on visual field in glaucoma. Eur J Ophthalmol. 2001;11(Suppl 2):S67–71.PubMedCrossRefGoogle Scholar
  189. 189.
    Evans DW, Hosking SL, Gherghel D, Bartlett JD. Contrast sensitivity improves after brimonidine therapy in primary open angle glaucoma: a case for neuroprotection. Br J Ophthalmol. 2003;87:1463–5.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Tsai JC, Chang HW. Comparison of the effects of brimonidine 0.2% and timolol 0.5% on retinal nerve fiber layer thickness in ocular hypertensive patients: a prospective, unmasked study. J Ocul Pharmacol Ther. 2005;21:475–82.PubMedCrossRefGoogle Scholar
  191. 191.
    Aung T, Oen FT, Wong HT, et al. Randomised controlled trial comparing the effect of brimonidine and timolol on visual field loss after acute primary angle closure. Br J Ophthalmol. 2004;88:88–94.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Sebastiani A, Parmeggiani F, Costagliola C, Ciancaglini M, D’Oronzo E, Mastropasqua L. Effects of acute topical administration of clonidine 0.125%, apraclonidine 1.0% and brimonidine 0.2% on visual field parameters and ocular perfusion pressure in patients with primary open-angle glaucoma. Acta Ophthalmol Scand Suppl. 2002;236:29–30.PubMedCrossRefGoogle Scholar
  193. 193.
    So KF, Aguayo AJ. Lengthy regrowth of cut axons from ganglion cells after peripheral nerve transplantation into the retina of adult rats. Brain Res. 1985;328:349–54.PubMedCrossRefGoogle Scholar
  194. 194.
    Wang JT, Kunzevitzky NJ, Dugas JC, Cameron M, Barres BA, Goldberg JL. Disease gene candidates revealed by expression profiling of retinal ganglion cell development. J Neurosci. 2007;27:8593–603.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Park KK, Hu Y, Muhling J, et al. Cytokine-induced SOCS expression is inhibited by cAMP analogue: impact on regeneration in injured retina. Mol Cell Neurosci. 2009;41:313–24.PubMedCrossRefGoogle Scholar
  196. 196.
    Moore DL, Blackmore MG, Hu Y, et al. KLF family members regulate intrinsic axon regeneration ability. Science. 2009;326:298–301.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Park KK, Liu K, Hu Y, et al. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science. 2008;322:963–6.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Smith PD, Sun F, Park KK, et al. SOCS3 deletion promotes optic nerve regeneration in vivo. Neuron. 2009;64:617–23.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Fischer D, Leibinger M. Promoting optic nerve regeneration. Prog Retin Eye Res. 2012;31:688–701.PubMedCrossRefGoogle Scholar
  200. 200.
    Calkins DJ, Pekny M, Cooper ML, Benowitz L. The challenge of regenerative therapies for the optic nerve in glaucoma. Exp Eye Res. 2017;157:28–33.PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Doster SK, Lozano AM, Aguayo AJ, Willard MB. Expression of the growth-associated protein GAP-43 in adult rat retinal ganglion cells following axon injury. Neuron. 1991;6:635–47.PubMedCrossRefGoogle Scholar
  202. 202.
    Huang C, Cen LP, Liu L, et al. Adeno-associated virus-mediated expression of growth-associated protein-43 aggravates retinal ganglion cell death in experimental chronic glaucomatous injury. Mol Vis. 2013;19:1422–32.PubMedPubMedCentralGoogle Scholar
  203. 203.
    Dai C, Khaw PT, Yin ZQ, Li D, Raisman G, Li Y. Olfactory ensheathing cells rescue optic nerve fibers in a rat glaucoma model. Transl Vis Sci Technol. 2012;1:3.PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Mead B, Hill LJ, Blanch RJ, et al. Mesenchymal stromal cell-mediated neuroprotection and functional preservation of retinal ganglion cells in a rodent model of glaucoma. Cytotherapy. 2016;18:487–96.PubMedCrossRefGoogle Scholar
  205. 205.
    Zhong L, Bradley J, Schubert W, et al. Erythropoietin promotes survival of retinal ganglion cells in DBA/2J glaucoma mice. Invest Ophthalmol Vis Sci. 2007;48:1212–8.PubMedCrossRefGoogle Scholar
  206. 206.
    Bond WS, Hines-Beard J, GoldenMerry YL, et al. Virus-mediated EpoR76E therapy slows optic nerve axonopathy in experimental glaucoma. Mol Ther. 2016;24:230–9.PubMedCrossRefGoogle Scholar
  207. 207.
    Hines-Beard J, Bond WS, Backstrom JR, Rex TS. Virus-mediated EpoR76E gene therapy preserves vision in a glaucoma model by modulating neuroinflammation and decreasing oxidative stress. J Neuroinflammation. 2016;13:39.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Nagai N, Noda K, Urano T, et al. Selective suppression of pathologic, but not physiologic, retinal neovascularization by blocking the angiotensin II type 1 receptor. Invest Ophthalmol Vis Sci. 2005;46:1078–84.PubMedCrossRefGoogle Scholar
  209. 209.
    Downie LE, Pianta MJ, Vingrys AJ, Wilkinson-Berka JL, Fletcher EL. AT1 receptor inhibition prevents astrocyte degeneration and restores vascular growth in oxygen-induced retinopathy. Glia. 2008;56:1076–90.PubMedCrossRefGoogle Scholar
  210. 210.
    Yang H, Hirooka K, Fukuda K, Shiraga F. Neuroprotective effects of angiotensin II type 1 receptor blocker in a rat model of chronic glaucoma. Invest Ophthalmol Vis Sci. 2009;50:5800–4.PubMedCrossRefGoogle Scholar
  211. 211.
    Foureaux G, Nogueira JC, Nogueira BS, et al. Antiglaucomatous effects of the activation of intrinsic Angiotensin-converting enzyme 2. Invest Ophthalmol Vis Sci. 2013;54:4296–306.PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Hirooka K, Baba T, Fujimura T, Shiraga F. Prevention of visual field defect progression with angiotensin-converting enzyme inhibitor in eyes with normal-tension glaucoma. Am J Ophthalmol. 2006;142:523–5.PubMedCrossRefGoogle Scholar
  213. 213.
    Husain S, Potter DE, Crosson CE. Opioid receptor-activation: retina protected from ischemic injury. Invest Ophthalmol Vis Sci. 2009;50:3853–9.PubMedCrossRefGoogle Scholar
  214. 214.
    Husain S, Abdul Y, Crosson CE. Preservation of retina ganglion cell function by morphine in a chronic ocular-hypertensive rat model. Invest Ophthalmol Vis Sci. 2012;53:4289–98.PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Abdul Y, Akhter N, Husain S. Delta-opioid agonist SNC-121 protects retinal ganglion cell function in a chronic ocular hypertensive rat model. Invest Ophthalmol Vis Sci. 2013;54:1816–28.PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Husain S, Ahmad A, Singh S, Peterseim C, Abdul Y, Nutaitis MJ. PI3K/Akt pathway: a role in delta-opioid receptor-mediated RGC neuroprotection. Invest Ophthalmol Vis Sci. 2017;58:6489–99.PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Belforte NA, Moreno MC, de Zavalia N, et al. Melatonin: a novel neuroprotectant for the treatment of glaucoma. J Pineal Res. 2010;48:353–64.PubMedCrossRefGoogle Scholar
  218. 218.
    Kumar DM, Perez E, Cai ZY, et al. Role of nonfeminizing estrogen analogues in neuroprotection of rat retinal ganglion cells against glutamate-induced cytotoxicity. Free Radic Biol Med. 2005;38:1152–63.PubMedCrossRefGoogle Scholar
  219. 219.
    Nakazawa T, Takahashi H, Shimura M. Estrogen has a neuroprotective effect on axotomized RGCs through ERK signal transduction pathway. Brain Res. 2006;1093:141–9.PubMedCrossRefGoogle Scholar
  220. 220.
    Zhou X, Li F, Ge J, et al. Retinal ganglion cell protection by 17-beta-estradiol in a mouse model of inherited glaucoma. Dev Neurobiol. 2007;67:603–16.PubMedCrossRefGoogle Scholar
  221. 221.
    Russo R, Cavaliere F, Watanabe C, et al. 17Beta-estradiol prevents retinal ganglion cell loss induced by acute rise of intraocular pressure in rat. Prog Brain Res. 2008;173:583–90.PubMedCrossRefGoogle Scholar
  222. 222.
    Yamashita H, Yamada-Nakayama C, Sugihara K, et al. Functional and morphological effects of beta-estradiol in eyes with N-methyl-D-Aspartate-induced retinal neurotoxicity in rats. Exp Eye Res. 2011;93:75–81.PubMedCrossRefGoogle Scholar
  223. 223.
    Li H, Wang B, Zhu C, et al. 17beta-estradiol impedes Bax-involved mitochondrial apoptosis of retinal nerve cells induced by oxidative damage via the phosphatidylinositol 3-kinase/Akt signal pathway. J Mol Neurosci. 2013;50:482–93.PubMedCrossRefGoogle Scholar
  224. 224.
    Prokai-Tatrai K, Xin H, Nguyen V, et al. 17beta-estradiol eye drops protect the retinal ganglion cell layer and preserve visual function in an in vivo model of glaucoma. Mol Pharm. 2013;10:3253–61.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Stein Eye Institute, Glaucoma Division, Department of Ophthalmology, David Geffen School of Medicine, University of California Los AngelesLos AngelesUSA
  2. 2.Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science CenterFort WorthUSA

Personalised recommendations