Skip to main content

Behrends–Fronsdal Spin Projection Operator in Space-Time with Arbitrary Dimension

  • Conference paper
  • First Online:
Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics Volume 1 (LT-XII/QTS-X 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 263))

Included in the following conference series:

  • 683 Accesses

Abstract

On the basis of the Wigner unitary representations of the covering group \(ISL(2,\mathbb {C})\) of the Poincar’e group we construct spin-tensor wave functions of free massive particles with arbitrary spin. These wave functions automatically satisfy the Dirac–Pauli–Fierz equations. Spin-tensors of polarizations and conditions that fix the corresponding relativistic spin projection operators (Behrends–Fronsdal projection operators which determine the numerators in the propagators of fields of relativistic particles) are obtained. With the help of these conditions we find the generalization for relativistic spin projection operators for particles of arbitrary spins and for arbitrary space-time dimensions \(D>2\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.P. Isaev and M.A. Podoinitsyn, Two-spinor description of massive particles and relativistic spin projection operators, Nucl. Phys. B, 929 (2018) 452–484; arXiv:1712.00833 [hep-th].

    Article  MathSciNet  Google Scholar 

  2. E.P. Wigner, On unitary representations of the inhomogeneous Lorentz group, Annals of Mathematics, 40 (1) (1939) 149–204; V. Bargmann, E.P. Wigner, Group theoretical discussion of relativistic wave equations, Proceedings of the National Academy of Sciences of the USA, 34(5) (1948) 211.

    Article  MathSciNet  Google Scholar 

  3. Yu.V. Novozhilov, Introduction to Elementary Particle Theory, Volume 78 in International Series in Natural Philosophy, Pergamon Press, Oxford (1975).

    Chapter  Google Scholar 

  4. N.N. Bogoliubov, A.A. Logunov, A.I. Oksak and I. Todorov, General principles of quantum field theory (Vol. 10), Springer Science & Business Media (2012).

    Google Scholar 

  5. S. Weinberg, Feynman Rules for Any Spin, Phys. Rev. 133 (1964) B1318; Feynman Rules for Any Spin. 2. Massless Particles, Phys. Rev. 134 (1964) B882.

    Article  MathSciNet  Google Scholar 

  6. P.A.M. Dirac, Relativistic wave equations, Proc. Roy. Soc. A, 155 (1936) 447.

    Article  Google Scholar 

  7. M. Fierz, ber den drehimpuls von teilichen mit ruhemasse null und beliebigem spin.

    Google Scholar 

  8. M. Fierz and W. Pauli, On Relativistic Wave Equations for Particles of Arbitrary Spin in an Electromagnetic Field, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 173, No. 953 (1939) 211–232.

    Article  MathSciNet  Google Scholar 

  9. C. Fronsdal, On the theory of higher spin fields, Il Nuovo Cimento (1955-1965) 9 (1958) 416–443.

    Article  MathSciNet  Google Scholar 

  10. R.E. Behrends, C. Fronsdal, Fermy decay for higher spin particles, Physical Review 106.2 (1957) 345.

    Article  Google Scholar 

  11. E. Witten, Perturbative gauge theory as a string theory in twistor space, Comm. Math. Phys 252, 1-3 (2004) 189–258.

    Article  MathSciNet  Google Scholar 

  12. H. Elvang and Y. Huang, Scattering amplitudes in gauge theory and gravity, Cambridge University Press, 2015.

    Google Scholar 

  13. E. Conde and A. Marzolla, Lorentz constraints on massive three-point amplitudes, Journal of High Energy Physics 09 (2016) 041; arXiv:1601.08113 [hep-th].

  14. E. Conde, E. Joung and K. Mkrtchyan, Spinor-Helicity Three-Point Amplitudes from Local Cubic Interactions, Journal of High Energy Physics 08 (2016) 040; arXiv:1605.07402 [hep-th].

  15. A. Marzolla, The 4D on-shell 3-point amplitude in spinor-helicity formalism and BCFW recursion relations, in Proceedings of 12th Modave Summer School in Mathematical Physics (11–17 Sep 2016, Modave, Belgium), (2017) 002; arXiv:1705.09678 [hep-th].

Download references

Acknowledgements

This work was supported by Russian Science Foundation, grant 14-11-00598.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Isaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Isaev, A.P., Podoinitsyn, M.A. (2018). Behrends–Fronsdal Spin Projection Operator in Space-Time with Arbitrary Dimension. In: Dobrev, V. (eds) Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics Volume 1 . LT-XII/QTS-X 2017. Springer Proceedings in Mathematics & Statistics, vol 263. Springer, Singapore. https://doi.org/10.1007/978-981-13-2715-5_7

Download citation

Publish with us

Policies and ethics