Skip to main content

The Characteristics and Therapeutic Application of Perinatal Mesenchymal Stem Cell-Derived Exosomes

  • Chapter
  • First Online:
  • 372 Accesses

Abstract

Exosomes are secretory vesicles with diameters range from 40 to 100 nm, which are considered to play an important role in intercellular communication. Exosomes contain proteins, lipids, microRNAs, mRNAs, and other noncoding RNAs. It is demonstrated that exosomes derived from diverse cell types have different therapeutic potentials. Recently, perinatal mesenchymal stem cells (MSCs) have attracted much attention due to their unique characteristics. Therefore, perinatal MSC-derived exosomes may provide novel therapeutic potentials. In this chapter, we will summarize the characteristics of exosomes. Moreover, we will focus on recent reports on perinatal MSC-derived exosomes and consider their therapeutic potentials. Finally, we will introduce some strategies to modify exosome for tracking their fate in vivo and enhancing their therapeutic efficiency.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. EL Andaloussi S, Mäger I, Breakefield XO, et al. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013;12:347–57.

    Article  CAS  PubMed  Google Scholar 

  2. Pan BT, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell. 1983;33:967–78.

    Article  CAS  PubMed  Google Scholar 

  3. Pan BT, Teng K, Wu C, et al. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol. 1985;101:942–8.

    Article  CAS  PubMed  Google Scholar 

  4. Nazimek K, Ptak W, Nowak B, et al. Macrophages play an essential role in antigen-specific immune suppression mediated by T CD8+ cell-derived exosomes. Immunology. 2015;146:23–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chowdhury R, Webber JP, Gurney M, et al. Cancer exosomes trigger mesenchymal stem cell differentiation into pro-angiogenic and pro-invasive myofibroblasts. Oncotarget. 2015;6:715–31.

    Article  PubMed  Google Scholar 

  6. Moon HG, Cao Y, Yang J, et al. Lung epithelial cell-derived extracellular vesicles activate macrophage-mediated inflammatory responses via ROCK1 pathway. Cell Death Dis. 2015;6:e2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Budnik V, Ruiz-Cañada C, Wendler F. Extracellular vesicles round off communication in the nervous system. Nat Rev Neurosci. 2016;17:160–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baroni S, Romero-Cordoba S, Plantamura I, et al. Exosome-mediated delivery of miR-9 induces cancer-associated fibroblast-like properties in human breast fibroblasts. Cell Death Dis. 2016;7:e2312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tan CY, Lai RC, Wong W, et al. Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res Ther. 2014;5:76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Hannafon BN, Trigoso YD, Calloway CL, et al. Plasma exosome microRNAs are indicative of breast cancer. Breast Cancer Res. 2016;18:90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Tataruch-Weinert D, Musante L, Kretz O, et al. Urinary extracellular vesicles for RNA extraction: optimization of a protocol devoid of prokaryote contamination. J Extracell Vesicles. 2016;5:30281.

    Article  PubMed  CAS  Google Scholar 

  12. Qin W, Tsukasaki Y, Dasgupta S, et al. Exosomes in human breast milk promote EMT. Clin Cancer Res. 2016;22:4517–24.

    Article  CAS  PubMed  Google Scholar 

  13. Gui Y, Liu H, Zhang L, et al. Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget. 2015;6:37043–53.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gregson AL, Hoji A, Injean P, et al. Altered exosomal RNA profiles in bronchoalveolar lavage from lung transplants with acute rejection. Am J Respir Crit Care Med. 2015;192:1490–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim SJ, Chen Z, Essani AB, et al. Identification of a novel Toll-like receptor 7 endogenous ligand in rheumatoid arthritis synovial fluid that can provoke arthritic joint inflammation. Arthritis Rheumatol. 2016;68:1099–110.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kowal J, Tkach M, Théry C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol. 2014;29:116–25.

    Article  CAS  PubMed  Google Scholar 

  17. Dreyer F, Baur A. Biogenesis and functions of exosomes and extracellular vesicles. Methods Mol Biol. 2016;1448:201–16.

    Article  CAS  PubMed  Google Scholar 

  18. Katzmann DJ, Odorizzi G, Emr SD. Receptor downregulation and multivesicular-body sorting. Nat Rev Mol Cell Biol. 2002;3:893–905.

    Article  CAS  PubMed  Google Scholar 

  19. Raiborg C, Rusten TE, Stenmark H. Protein sorting into multivesicular endosomes. Curr Opin Cell Biol. 2003;15:446–55.

    Article  CAS  PubMed  Google Scholar 

  20. Guduric-Fuchs J, O’Connor A, Camp B, et al. Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genomics. 2012;13:357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gibbings DJ, Ciaudo C, Erhardt M, et al. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol. 2009;11:1143–9.

    Article  CAS  PubMed  Google Scholar 

  22. Chevallier J, Chamoun Z, Jiang G, et al. Lysobisphosphatidic acid controls endosomal cholesterol levels. J Biol Chem. 2008;283:27871–80.

    Article  CAS  PubMed  Google Scholar 

  23. Shurtleff MJ, Temoche-Diaz MM, Karfilis KV, et al. Y-box protein 1 is required to sort microRNAs into exosomes in cells and in a cell-free reaction. Elife. 2016;5. pii: e19276.

    Google Scholar 

  24. Xiao Z, Blonder J, Zhou M, et al. Proteomic analysis of extracellular matrix and vesicles. J Proteomics. 2009;72:34–45.

    Article  CAS  PubMed  Google Scholar 

  25. Timár CI, Lorincz AM, Csépányi-Kömi R, et al. Antibacterial effect of microvesicles released from human neutrophilic granulocytes. Blood. 2013;121(3):510–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Valadi H, Ekstrom K, Bossios A, et al. Exosome mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.

    Article  CAS  PubMed  Google Scholar 

  27. Montecalvo A, Larregina AT, Shufesky WJ, et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood. 2012;119:756–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ismail N, Wang Y, Dakhlallah D, et al. Macrophage microvesicles induce macrophage differentiation and miR-223 transfer. Blood. 2013;121:984–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fabbri M, Paone A, Calore F, et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci U S A. 2012;109:E2110–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bellingham SA, Coleman BM, Hill AF. Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic Acids Res. 2012;40:10937–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang X, Yuan T, Tschannen M, et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics. 2013;14:319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gezer U, Ozgur E, Cetinkaya M, et al. Long non-coding RNAs with low expression levels in cells are enriched in secreted exosomes. Cell Biol Int. 2014;38:1076–9.

    CAS  PubMed  Google Scholar 

  33. Thakur BK, Zhang H, Becker A, et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 2014;24:766–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhan R, Leng X, Liu X, et al. Heat shock protein 70 is secreted from endothelial cells by a non-classical pathway involving exosomes. Biochem Biophys Res Commun. 2009;387:229–33.

    Article  CAS  PubMed  Google Scholar 

  35. De Jong OG, Verhaar MC, Chen Y, et al. Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles. 2012;16:1.

    Google Scholar 

  36. Kalamvoki M, Du T, Roizman B. Cells infected with herpes simplex virus 1 export to uninfected cells exosomes containing STING, viral mRNAs, and microRNAs. Proc Natl Acad Sci U S A. 2014;111:E4991–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kore RA, Abraham EC. Inflammatory cytokines, interleukin-1 and tumor necrosis factor-alpha upregulated in glioblastoma multiforme, raise the levels of CRYAB in exosomes secreted by U373 glioma cells. Biochem Biophys Res Commun. 2014;453:326–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kato T, Miyaki S, Ishitobi H, et al. Exosomes from IL-1β stimulated synovial fibroblasts induce osteoarthritic changes in articular chondrocytes. Arthritis Res Ther. 2014;16:R163.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ekström EJ, Bergenfelz C, von Bülow V, et al. WNT5A induces release of exosomes containing pro-angiogenic and immunosuppressive factors from malignant melanoma cells. Mol Cancer. 2014;13:88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Nazarenko I, Rana S, Baumann A, et al. Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res. 2010;70:1668–78.

    Article  CAS  PubMed  Google Scholar 

  41. Clayton A, Turkes A, Dewitt S, et al. Adhesion and signaling by B cell-derived exosomes: the role of integrins. FASEB J. 2004;18:977–9.

    Article  CAS  PubMed  Google Scholar 

  42. Calzolari A, Raggi C, Deaglio S, et al. TfR2 localizes in lipid raft domains and is released in exosomes to activate signal transduction along the MAPK pathway. J Cell Sci. 2006;119:4486–98.

    Article  CAS  PubMed  Google Scholar 

  43. Keller S, Sanderson MP, Stoeck A, et al. Exosomes: from biogenesis and secretion to biological function. Immunol Lett. 2006;107:102–8.

    Article  CAS  PubMed  Google Scholar 

  44. Perez-Hernandez D, Gutierrez-Vazquez C, Jorge I, et al. The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes. J Biol Chem. 2013;288:11649–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Viaud S, Terme M, Flament C, et al. Dendritic cell-derived exosomes promote natural killer cell activation and proliferation: a role for NKG2D ligands and IL-15Ralpha. PLoS One. 2009;4:e4942.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Nolte-’t Hoen EN, Buschow SI, Anderton SM, et al. Activated T cells recruit exosomes secreted by dendritic cells via LFA-1. Blood. 2009;113:1977–81.

    Article  PubMed  CAS  Google Scholar 

  47. Segura E, Guerin C, Hogg N, et al. CD8+ dendritic cells use LFA-1 to capture MHC-peptide complexes from exosomes in vivo. J Immunol. 2007;179:1489–96.

    Article  CAS  PubMed  Google Scholar 

  48. Subra C, Grand D, Laulagnier K, et al. Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J Lipid Res. 2010;51:2105–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xu R, Greening DW, Zhu HJ, et al. Extracellular vesicle isolation and characterization: toward clinical application. J Clin Invest. 2016;126:1152–62.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Clayton A, Court J, Navabi H, et al. Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. J Immunol Methods. 2001;247:163–74.

    Article  CAS  PubMed  Google Scholar 

  51. Cheruvanky A, Zhou H, Pisitkun T, et al. Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator. Am J Physiol Renal Physiol. 2007;292:F1657–61.

    Article  CAS  PubMed  Google Scholar 

  52. Ingham KC. Precipitation of proteins with polyethylene glycol. Methods Enzymol. 1990;182:301–6.

    Article  CAS  PubMed  Google Scholar 

  53. Weng Y, Sui Z, Shan Y, et al. Effective isolation of exosomes with polyethylene glycol from cell culture supernatant for in-depth proteome profiling. Analyst. 2016;141(15):4640–6.

    Article  CAS  PubMed  Google Scholar 

  54. Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin. 2016;6:287–96.

    Article  Google Scholar 

  55. Lai RC, Yeo RW, Tan KH, et al. Exosomes for drug delivery—a novel application for the mesenchymal stem cell. Biotechnol Adv. 2013;31:543–51.

    Article  CAS  PubMed  Google Scholar 

  56. Tomasoni S, Longaretti L, Rota C, et al. Transfer of growth factor receptor mRNA via exosomes unravels the regenerative effect of mesenchymal stem cells. Stem Cells Dev. 2013;22:772–80.

    Article  CAS  PubMed  Google Scholar 

  57. Hood JL, San RS, Wickline SA. Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res. 2011;71:3792–801.

    Article  CAS  PubMed  Google Scholar 

  58. Alvarez-Erviti L, Seow Y, Yin H, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29:341–5.

    Article  CAS  PubMed  Google Scholar 

  59. Fang Y, Wu N, Gan X, et al. Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes. PLoS Biol. 2007;5:e158.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Delcayre A, Estelles A, Sperinde J, et al. Exosome display technology: applications to the development of new diagnostics and therapeutics. Blood Cells Mol Dis. 2005;35:158–68.

    Article  CAS  PubMed  Google Scholar 

  61. Véron P, Segura E, Sugano G, et al. Accumulation of MFG-E8/lactadherin on exosomes from immature dendritic cells. Blood Cells Mol Dis. 2005;35:81–8.

    Article  PubMed  CAS  Google Scholar 

  62. Baksh D, Song L, Tuan RS. Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med. 2004;8:301–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kode JA, Mukherjee S, Joglekar MV, et al. Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy. 2009;11:377–91.

    Article  CAS  PubMed  Google Scholar 

  64. Baksh D, Yao R, Tuan RS. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells. 2007;25:1384–92.

    Article  CAS  PubMed  Google Scholar 

  65. Yang ZX, Han ZB, Ji YR, et al. CD106 identifies a subpopulation of mesenchymal stem cells with unique immunomodulatory properties. PLoS One. 2013;8:e59354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gao F, Chiu SM, Motan DA, et al. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis. 2016;7:e2062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. English K. Mechanisms of mesenchymal stromal cell immunomodulation. Immunol Cell Biol. 2013;91:19–26.

    Article  CAS  PubMed  Google Scholar 

  68. Chen W, Huang Y, Han J, et al. Immunomodulatory effects of mesenchymal stromal cells-derived exosome. Immunol Res. 2016;64:831–40.

    Article  CAS  PubMed  Google Scholar 

  69. Liu M, Wang J, Liu M, et al. Study of immunomodulatory function of exosomes derived from human umbilical cord mesenchymal stem cells. Zhonghua Yi Xue Za Zhi. 2015;95:2630–3.

    CAS  PubMed  Google Scholar 

  70. Li X, Liu L, Yang J, et al. Exosome derived from human umbilical cord mesenchymal stem cell mediates MiR-181c attenuating burn-induced excessive inflammation. EBioMedicine. 2016;8:72–82.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ti D, Hao H, Tong C, et al. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. J Transl Med. 2015;13:308.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Adams RH, Alitalo K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol. 2007;8:464–78.

    Article  CAS  PubMed  Google Scholar 

  73. Anderson JD, Johansson HJ, Graham CS, et al. Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear factor-kappaB signaling. Stem Cells. 2016;34:601–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shabbir A, Cox A, Rodriguez-Menocal L, et al. Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro. Stem Cells Dev. 2015;24:1635–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang B, Wu X, Zhang X, et al. Human umbilical cord mesenchymal stem cell exosomes enhance angiogenesis through the Wnt4/β-catenin pathway. Stem Cells Transl Med. 2015;4:513–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ma J, Zhao Y, Sun L, et al. Exosomes derived from Akt-modified human umbilical cord mesenchymal stem cells improve cardiac regeneration and promote angiogenesis via activating platelet-derived growth factor D. Stem Cells Transl Med. 2016;6:51–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Bruno S, Grange C, Deregibus MC, et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol. 2009;20:1053–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhou Y, Xu H, Xu W, et al. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther. 2013;4:34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zou X, Zhang G, Cheng Z, et al. Microvesicles derived from human Wharton’s Jelly mesenchymal stromal cells ameliorate renal ischemia-reperfusion injury in rats by suppressing CX3CL1. Stem Cell Res Ther. 2014;5:40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Zhang G, Zou X, Miao S, et al. The anti-oxidative role of micro-vesicles derived from human Wharton-Jelly mesenchymal stromal cells through NOX2/gp91(phox) suppression in alleviating renal ischemia-reperfusion injury in rats. PLoS One. 2014;9:e92129.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Ranganath SH, Levy O, Inamdar MS, et al. Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell. 2012;10:244–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hare JM, Traverse JH, Henry TD, et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol. 2009;54:2277–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Teng X, Chen L, Chen W, et al. Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation. Cell Physiol Biochem. 2015;37:2415–24.

    Article  CAS  PubMed  Google Scholar 

  84. Zhao Y, Sun X, Cao W, et al. Exosomes derived from human umbilical cord mesenchymal stem cells relieve acute myocardial ischemic injury. Stem Cells Int. 2015;2015:761643.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Liu WH, Song FQ, Ren LN, et al. The multiple functional roles of mesenchymal stem cells in participating in treating liver diseases. J Cell Mol Med. 2015;19:511–20.

    Article  CAS  PubMed  Google Scholar 

  86. Li C, Kong Y, Wang H, et al. Homing of bone marrow mesenchymal stem cells mediated by sphingosine 1-phosphate contributes to liver fibrosis. J Hepatol. 2009;50:1174–83.

    Article  CAS  PubMed  Google Scholar 

  87. Ma F, Chen D, Chen F, et al. Human umbilical cord mesenchymal stem cells promote breast cancer metastasis by interleukin-8- and interleukin-6-dependent induction of CD44(+)/CD24(-) cells. Cell Transplant. 2015;24:2585–99.

    Article  PubMed  Google Scholar 

  88. Li T, Yan Y, Wang B, et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev. 2013;22:845–54.

    Article  CAS  PubMed  Google Scholar 

  89. Takahashi Y, Nishikawa M, Shinotsuka H, et al. Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection. J Biotechnol. 2013;165:77–84.

    Article  CAS  PubMed  Google Scholar 

  90. Lai CP, Mardini O, Ericsson M, et al. Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS Nano. 2014;8:483–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tian Y, Li S, Song J, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials. 2014;35:2383–90.

    Article  CAS  PubMed  Google Scholar 

  92. Yu B, Kim HW, Gong M, et al. Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection. Int J Cardiol. 2015;182:349–60.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengxia Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ma, F. (2019). The Characteristics and Therapeutic Application of Perinatal Mesenchymal Stem Cell-Derived Exosomes. In: Han, Z., Takahashi, T., Han, Z., Li, Z. (eds) Perinatal Stem Cells. Springer, Singapore. https://doi.org/10.1007/978-981-13-2703-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2703-2_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2702-5

  • Online ISBN: 978-981-13-2703-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics