Skip to main content

Performance Augmentation of Boron–HTPB-Based Solid Fuels by Energetic Additives for Hybrid Gas Generator in Ducted Rocket Applications

  • Conference paper
  • First Online:
Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering (I-DAD 2018)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

  • 1285 Accesses

Abstract

Experimental investigations were conducted using an opposed flow burner system (OFBS) to examine the combustion characteristics of boron–HTPB-based solid fuels with nano-energetic metal additives such as magnesium and titanium. The study has been mainly on regression rate characteristics and effects of additives on combustion behavior of B–HTPB-based solid fuels for hybrid gas generator in solid fuel ducted rocket (SFDR) applications. In the OFBS, gaseous oxygen (GOX) has been impinged on the solid fuel surface at mass flux range (Gox) of 20–57 kg/m2 s for various concentrations of solid fuel samples. Magnesium addition to the boron–HTPB mixture has been found to help in increasing the regression rate by 12.5% compared to only boron-loaded case at 57 Gox. However, similar result has not been noticed for titanium case. A high-speed camera is used to visualize the burning surface and the ejected burning agglomerates of the solid fuels. Standard material characterization techniques such as FE-SEM, XRD, EDS, and TGA are used for characterizing feed particles as well as condensed combustion products (CCP) of various samples studied in this investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Komornik, D., Gany, A.: Study of a hybrid gas generator for a ducted rocket. Combust. Explos. Shock Waves 53(3), 293–297 (2017)

    Article  Google Scholar 

  2. Leingang, J.L., Petters, D.P.: Ducted rockets. In: Jensen, G.E., Netzer, D.W. (eds.) Progress in Astronautic and Aeronautic, Tactical Missile Propulsion, vol. 170, pp. 447–468 (1996)

    Google Scholar 

  3. Miyayama, T., Oshima, H., Toshiyuki, S., Odawara, T., Tanabe, M., Kuwahara, T.: Improving combustion of boron particles in secondary combustor of ducted rockets. In: 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, California, USA (2006)

    Google Scholar 

  4. Yeh, C.L., Kuo, K.K.: Ignition and combustion of boron particles. Prog. Energy Combust. Sci. 22(6), 511–541 (1996)

    Article  Google Scholar 

  5. Macek, A., Sample, J.M.: Combustion of boron particles at atmospheric pressure. Combust. Sci. Technol. 1(3), 181–191 (1969)

    Article  Google Scholar 

  6. King, M.K.: Ignition and combustion of boron particles and clouds. J. Spacecr. Rockets 19(4), 294–306 (1982)

    Article  Google Scholar 

  7. Fink, L.E.: Chronological History of SFRJ Flight Tests. Engineering Technology Boeing Aerospace Company (1981)

    Google Scholar 

  8. Natan, B., Gany, A.: Combustion characteristics of a boron fueled solid fuel ramjet with aft-burner. J. Propul. Power 9(5), 694–701 (1993)

    Article  Google Scholar 

  9. Balas, S., Natan, B.: Boron oxide condensation in a hydrocarbon-boron gel fuel ramjet. J. Propul. Power 32(4), 967–974 (2016)

    Article  Google Scholar 

  10. Young, G., Roberts, C.W., Stoltz, C.A.: Ignition and combustion enhancement of boron with polytetrafluoroethylene. J. Propul. Power 31(1), 386–392 (2015)

    Article  Google Scholar 

  11. Kuo, K.K., Risha, G.A., Evans, B.J., Boyer, E.: Potential usage of energetic nano-sized powders for combustion and rocket propulsion. In: Proceeding of Materials Research Society, vol. 800 (2003)

    Google Scholar 

  12. Young, G., Sullivan, K., Zachariah, M.R., Yu, K.: Combustion characteristics of boron nanoparticles. Combust. Flame 156(2), 322–333 (2009)

    Article  Google Scholar 

  13. Korchagin, M.A., Grigor’eva, T.F., Bokhonov. B.B., Sharafutdinov, M.R., Barinova, A.P., Lyakhov, N.Z.: Solid-state combustion in mechanically activated SHS systems. I: Effect of activation time on process parameters and combustion product composition. Combust. Explos. Shock Waves 39(1), 43–50 (2003)

    Google Scholar 

  14. Rogachev, A.S., Mukasyan, A.S.: Combustion of heterogeneous nanostructural systems. Combust. Explos. Shock Waves 46(3), 243–266 (2010)

    Article  Google Scholar 

  15. Hashim, S.A., Lahariya, M., Karmakar, S., Roy, A.: Calculation of theoretical performance of boron-based composite solid propellant for the future applications. In: 2nd Innovative Design and Development Practices in Aerospace and Automotive Engineering Conference (International), Springer, New Delhi, pp. 327–335 (2016)

    Google Scholar 

  16. Weismiller, M.R., Huba, Z.J., Tuttle, S.G., Epshteyn, A., Fisher, B.T.: Combustion characteristics of high energy Ti–Al–B nanopowders in a decane spray flame. Combust. Flame 176, 361–369 (2017)

    Article  Google Scholar 

  17. Zolotko, A.N., Matsko, A.M., Polishchuk, D.I., Buinovskii, S.N., Gaponenko, L.A.: Ignition of a two-component gas suspension of metal particles. Combust. Explos. Shock Waves 16(1), 20–23 (1980)

    Article  Google Scholar 

  18. Chiaverini, M.J., Harting, G.C., Lu, Y.C., Kuo, K.K., Peretz, A., Jones, H.S., Wygle, B.S., Arves, J.P.: Pyrolysis behavior of hybrid-rocket solid fuels under rapid heating conditions. J. Propul. Power 15(6), 888–895 (1999)

    Article  Google Scholar 

  19. Radhakrishnan, T.S., Rama Rao, M.: Thermal decomposition of polybutadienes by pyrolysis gas chromatography. J. Polym. Sci. Polym. Chem. 19(12), 3197–3208 (1981)

    Article  Google Scholar 

  20. Beck, W.H.: Pyrolysis studies of polymeric materials used as binders in composite propellants: A review. Combust. Flame 70(2), 171–190 (1987)

    Article  Google Scholar 

  21. Sun, X., Tian, H., Li, Y., Yu, N., Cai, G.: Regression rate behaviors of HTPB-based propellant combinations for hybrid rocket motor. Acta Astronaut. 119, 137–146 (2016)

    Article  Google Scholar 

  22. Hashim, S.A., Kangle, S., Karmakar, S., Roy, A.: Combustion characteristics of boron-HTPB based solid fuels for hybrid rocket applications. In: 7th Theoretical, Applied, Computational and Experimental Mechanics Conference (International), Chennai, India (2017)

    Google Scholar 

  23. Schlichting, H., Gersten, K.: Boundary-layer theory, 9th edn. Springer, Germany (2017)

    Book  MATH  Google Scholar 

  24. T’ien, J.S., Singhal, S.N., Harrold, D.P., Prahl, J.M.: Combustion and extinction in the stagnation-point boundary layer of a condensed fuel. Combust. Flame 33, 55–68 (1978)

    Article  Google Scholar 

  25. Krishnamurthy, L., Williams, F.A.: A flame sheet in the stagnation-point boundary layer of a condensed fuel. Acta Astronaut. 1, 711–736 (1974)

    Article  Google Scholar 

  26. Nakoryakov, V.E., Pokusaev, B.G., Troyan, E.N.: Impingement of an axisymmetric liquid jet on a barrier. Int. J. Heat Mass Transf. 21(9), 1175–1184 (1978)

    Article  Google Scholar 

  27. Glauert, M.B.: The wall jet. J. Fluid Mech. 1(6), 625–643 (1956)

    Article  MathSciNet  Google Scholar 

  28. Watson, E.J.: The radial spread of a liquid jet over a horizontal plane. J. Fluid Mech. 20(3), 481–499 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shark, S.C., Zaseck, C.R., Pourpoint, T.L., Son, S.F.: Solid-fuel regression rates and flame characteristics in an opposed flow burner. J. Propul. Power 30(6), 1675–1682 (2014)

    Article  Google Scholar 

  30. Liu, J.Z., Xi, J.F., Yang, W.J., Hu, Y.R., Zhang, Y.W., Wang, Y., Zhou, J.H.: Effect of magnesium on the burning characteristics of boron particles. Acta Astronaut. 96, 89–96 (2014)

    Article  Google Scholar 

  31. Chaturvedi, S., Dave, P.N.: Solid propellants: AP/HTPB composite propellants. Arab. J. Chem., 1–8 (2015)

    Google Scholar 

  32. Beckstead, M.W.: A summary of aluminum combustion. Paper Presented at the RTO/VKI Special Course on Internal Aerodynamics in Solid Rocket Propulsion, vol. 32, no. 6, pp. 2107–2114 (2002)

    Google Scholar 

  33. King, M.K.: Aluminum combustion in a solid rocket motor environment. Proc. Combust. Inst. 32(2), 2107–2114 (2009)

    Article  Google Scholar 

  34. Sandall, E., Kalman, J., Quigley, J.N., Munro, S., Hedman, T.D.: A study of solid ramjet fuel containing boron–magnesium mixtures. Propuls. Power Res. 6(4), 243–252 (2017)

    Article  Google Scholar 

  35. Hashim, S.A., Karmakar, S., Roy, A., Srivastava, S.K.: Regression rates and burning characteristics of boron-loaded paraffin-wax solid fuels in ducted rocket applications. Combust. Flame 191, 287–297 (2018)

    Article  Google Scholar 

  36. Liu, D., Xia, Z., Huang, L., Hu, J.: Boron particle combustion in solid rocket ramjet. J. Aerosp. Eng. 28(4), 04014112 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Aerospace Engineering, Indian Institute of Technology Kharagpur, for providing support for establishing the experimental setup. Some of the equipment used in this study were supported by the Institute’s seed grant given to the author ‘SK’ (Grant number: IIT/SRIC/ISIRD/2013-2014, Dt. 21-02-2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinibas Karmakar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hashim, S.A., Kangle, S., Karmakar, S., Roy, A. (2019). Performance Augmentation of Boron–HTPB-Based Solid Fuels by Energetic Additives for Hybrid Gas Generator in Ducted Rocket Applications. In: Chandrasekhar, U., Yang, LJ., Gowthaman, S. (eds) Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering (I-DAD 2018). Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-2697-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2697-4_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2696-7

  • Online ISBN: 978-981-13-2697-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics