Skip to main content

Electrical Conductivity of Polymer–Carbon Composites: Effects of Different Factors

  • Chapter
  • First Online:
Book cover Carbon-Containing Polymer Composites

Abstract

In this chapter, the electrical conductivity/resistivity of polymer–carbon composites has been discussed in detail. The types of electrical resistivity and their measurement procedure have been depicted pictorially. The electrical conductivity of different carbon materials like diamond, graphite, fullerene, carbon fiber, carbon black, carbon nanotubes, and graphene are noted and discussed. The different techniques of preparation/processing of conducting polymer/carbon composites are mentioned here within short. Moreover, how the geometry/structure of different carbons controls the electrical conductivity of polymer composites has been critically reviewed. The electrical percolation threshold and the conductivity of polymer/carbon composites that depends on many physical and chemical factors are investigated from different literature sources and reported in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaynak A, Mohan S, Unsworth J, Clout R (1994) Plane-wave shielding effectiveness studies on conducting polypyrrole. J Mater Sci Lett 13:1121–1123

    Article  CAS  Google Scholar 

  2. Kohlman RS, Min YG, MacDiarmid AG, Epstein AJ (1996) Tunability of high frequency shielding in electronic polymers. J Eng Appl Sci 2:1412–1416

    Google Scholar 

  3. Tan S, Zhang M, Zeng H (1998) Electro-conductive polymer composite for shielding EMI. Cailiao Gongcheng/J Mater Eng 5:6–9

    Google Scholar 

  4. Rupprecht L, Hawkinson C (1999) Conductive plastics for medical applications. Med Device Diagn Ind 21:8

    Google Scholar 

  5. Wen S, Chung DDL (2005) Pitch-matrix composites for electrical, electromagnetic and strain-sensing applications. J Mater Sci 40:3897–3903

    Article  CAS  Google Scholar 

  6. MacDiarmid AG (2001) Nobel lecture. Angew Chem Int Ed 40:2581–2590

    Article  CAS  Google Scholar 

  7. Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J Chem Soc Chem Commun 578–580

    Google Scholar 

  8. Heeger AJ, Kivelson S, Schrieffer JR, Su WP (1988) Solitons in conducting polymers. Rev Mod Phys 60:781–850

    Article  CAS  Google Scholar 

  9. Salaneck WR, Bredas JL (1994) Conjugated polymers. Solid State Comm 92:31–36

    Article  CAS  Google Scholar 

  10. Unsworth J, Conn C, Jin Z, Kaynak A, Ediriweera R, Innis P, Booth N (1994) Conducting polymers: properties and applications. J Intell Mater Sys Struc 5:595–604

    Article  CAS  Google Scholar 

  11. Sauerer W (1994) Intrinsically conducting polymers—from exploratory research to applications. Galvanotechnik 85:1467–1472

    CAS  Google Scholar 

  12. Borgmans APJH, Glaser RH (1995) Design considerations for EMI shielding conductive plastic compounds. Evaluat Eng 34:S32–S37

    Google Scholar 

  13. Chung DDL (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39:279–285

    Article  CAS  Google Scholar 

  14. Sau KP, Chaki TK, Chakraborty A, Khastgir D (1997) Electromagnetic interference shielding by carbon black and carbon fibre filled rubber composites. Plast Rub Compos Process Appl 26:291–297

    CAS  Google Scholar 

  15. Flandin L, Hiltner A, Baer E (2001) Interrelationships between electrical and mechanical properties of a carbon black-filled ethylene-ocetene elastomer. Polymer 42:827–838

    Article  CAS  Google Scholar 

  16. Jana PB, Mallick AK, De SK (1993) Electromagnetic interference shielding effectiveness of short carbon fibre-filled polychloroprene vulcanized by barium ferrite. J Mater Sci 28:2097–2104

    Article  CAS  Google Scholar 

  17. Xing L, Liu J, Ren S (1998) Study on electromagnetic property of short carbon fibers and its application to radar absorbing materials. Cailiao Gongcheng/J Mater Eng 1:19–21

    Google Scholar 

  18. Jimenez G, Jana SC (2007) Electrically conductive polymer nanocomposites of polymethylmethacrylate and carbon nanofibers prepared by chaotic mixing. Composites Part A Appl Sci Manuf 38:983–993

    Article  CAS  Google Scholar 

  19. Sohi NJS, Bhadra S, Khastgir D (2011) The effect of different carbon fillers on the electrical conductivity of ethylene vinyl acetate copolymer-based composites and the applicability of different conductivity models. Carbon 41:1349–1361

    Article  CAS  Google Scholar 

  20. Potschke P, Bhattacharyya AR, Janke A (2003) Morphology and electrical resistivity of melt mixed blends of polyethylene and carbon nanotube filled polycarbonate. Polymer 44:8061–8069

    Article  CAS  Google Scholar 

  21. Potschke P, Bhattacharyya AR, Janke A (2004) Carbon nanotube-filled polycarbonate composites produced by melt mixing and their use in blends with polyethylene. Carbon 42:965–969

    Article  CAS  Google Scholar 

  22. Ounaies Z, Park C, Wise KE, Siochi EJ, Harrison JS (2003) Electrical properties of single wall carbon nanotube reinforced polyimide composites. Compos Sci Technol 63:1637–1646

    Article  CAS  Google Scholar 

  23. Yoon JK, Taek SS, Hyung DC, Jong HK, Yeon-Choon C, Ho GY (2005) Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites. Carbon 43:23–30

    Article  CAS  Google Scholar 

  24. Agnihotri P, Basu S, Kar KK (2011) Effect of carbon nanotube length and density on the properties of carbon nanotube-coated carbon fiber/polyester composites. Carbon 49:3098–3106

    Article  CAS  Google Scholar 

  25. Zou JF, Yu ZZ, Pan YX, Fang XP, Ou YC (2002) Conductive mechanism of polymer/graphite conducting composites with low percolation threshold. J Polym Sci Part B Polym Phys 40:954–963

    Article  CAS  Google Scholar 

  26. Savvinova ME, Kovalenko NA (2009) Influence of technological parameters on the electrical conduction of carbon composites. Russ Eng Res 29:487–489

    Article  Google Scholar 

  27. Sidhu A, Reike J, Michelsen U, Messinger R, Habiger E, Wolf J (1997) Metallization of plastics for shielding. In: IEEE international symposium on electromagnetic compatibility, Piscataway, New Jersey, USA: IEEE, pp 102–105

    Google Scholar 

  28. Jiang H, Moon KS, Li Y, Wong CP (2006) Surface functionalized silver nanoparticles for ultrahigh conductive polymer composites. Chem Mater 18:2969–2973

    Article  CAS  Google Scholar 

  29. Gwinner D, Scheyrer P, Fernandez W (1996) Selective deposition of aluminum on plastic parts for EMI shielding. In: Proceedings of 39th annual technical conference. Society of Vacuum Coaters, Albuquerque, New Mexico, USA, p 336

    Google Scholar 

  30. Notingher PV, Panaitescu D, Paven H, Chipara M (2004) Some characteristics of conductive polymer composites containing stainless steel fibers. J Optoelectro Adv Mater 6:1081–1084

    CAS  Google Scholar 

  31. Francis G, Hanejko GW, Ellis Timothy JH (1998) Application of high performance material processing—electromagnetic products. International conference on powder metallurgy & particulate materials. 31 May–4 June, Las Vegas, NV, USA

    Google Scholar 

  32. Stabik J, Dybowska A, Chomiak M (2010) Polymer composites filled with powders as polymer graded materials. J Achiev Mater Manuf Eng 43(1):153–161

    Google Scholar 

  33. Pierre Deltour R, Perenboom JA, Van Bentum PJM (1990) Electrical-conduction mechanisms in polymer-copper-particle composites. 1. Temperature and high-magnetic-field dependence of the conductivity. Phys Rev B 42:3380–3385

    Article  CAS  Google Scholar 

  34. Zhu M, Chung DDL (1991) Nickel fiber silicone–matrix composites as resilient electrical conductors. J Electron Packag 113:417–420

    Article  Google Scholar 

  35. Shui X, Chung DDL (2000) Submicron diameter nickel filaments and their polymer-matrix composites. J Mater Sci 35:1773–1785

    Article  CAS  Google Scholar 

  36. Fernando GSJ, Soares BG, Siddaramaiah Barra GMO, Herbst MH (2006) Influence of plasticizers (DOP and CNSL) on mechancial and electrical properties of SBS/polyaniline blends. Polymer 47:7548–7553

    Article  CAS  Google Scholar 

  37. Lakshmi K, John H, Mathew KT, Joseph R, George KE (2009) Microwave absorption, reflection and EMI shielding of PU–PANI composite. Acta Mater 57:371–375

    Article  CAS  Google Scholar 

  38. Askeland D (1988) The science and engineering of materials. Cengage Learning, Stamford

    Google Scholar 

  39. Lee PA, Stone AD, Fukuyama H (1987) Universal conductance fluctuations in metals: Effects of finite temperature, interactions, and magnetic field. Phys Rev B 35(3):1039–1070

    Article  CAS  Google Scholar 

  40. Kumar P, Yashonath S (2006) Ionic conduction in the solid state. J Chem Soc 118(1):135–154

    CAS  Google Scholar 

  41. ASTM Standard D 257-99 (1999) Standard test methods for DC resistance or conductance of insulating materials

    Google Scholar 

  42. ESD STM 11.11-2001 Standard (2001) Surface resistance measurement of static dissipative planar materials

    Google Scholar 

  43. Heaney MB (1999) Electrical Conductivity and Resistivity. In: The measurement, instrumentation and sensors handbook. CRC Press, Boca Raton

    Google Scholar 

  44. IEC 61340-5-1 Standard (1998) Electrostatics—part 5-1: Protection of electronic devices from electrostatic phenomena—general requirements

    Google Scholar 

  45. Banaszczyk J, Schwarz A, De Mey G, Van Langenhove L (2010) The Van der Pauw method for sheet resistance measurements of polypyrrole-coated para-aramide woven fabrics. J Appl Polym Sci 117:2553–2558

    CAS  Google Scholar 

  46. Rietveld G, Koijmans ChV, Henderson LCA, Hall MJ, Harmon S, Warnecke P, Schumacher B (2003) DC conductivity measurements in the Van Der Pauw geometry. IEEE Trans Instrum Meas 52(2):449–453

    Article  Google Scholar 

  47. Majid AJ (2011) Resistivity measurements of conductors and semiconductors of different geometrical shapes using Van der Pauw technique. Int J Sci Eng Res 2(10):1–5

    Google Scholar 

  48. Ram R, Rahaman M, Khastgir D (2015) Electrical properties of polyvinylidene fluoride (PVDF)/multi-walled carbon nanotube (MWCNT) composites: modelling of DC conductivity. Composites Part A Appl Sci Manuf 69:30–39

    Article  CAS  Google Scholar 

  49. Rahaman M, Chaki TK, Khastgir D (2012) Modeling of DC conductivity for ethylene vinyl acetate (EVA)/polyaniline conductive composites prepared through in-situ polymerization of aniline in EVA matrix. Compos Sci Technol 72:1575–1580

    Article  CAS  Google Scholar 

  50. Foygel M, Morris R, Anez D, French S, Sobolev V (2005) Theoretical and computational studies of carbon nanotube composites and sus-pensions: electrical and thermal conductivity. Phys Rev B 71:104201/1–104201/8

    Google Scholar 

  51. Stauffer D (1987) Introduction to percolation theory. Taylor and Francis, Inc., Philadelphia, p 181

    Google Scholar 

  52. Sahimi M (1994) Applications of percolation theory. Taylor and Francis, London, p 276

    Google Scholar 

  53. Tchoudakov R, Breuer O, Narkis M, Siegmann A (1996) Conductive polymer blends with low carbon black loading: polypropylene/polyamide. Polym Eng Sci 36:1336–1346

    Article  CAS  Google Scholar 

  54. Miyasaka K, Watanabe K, Jojima E, Aida H, Sumita M, Ishikawa K (1982) Electrical conductivity of carbon-polymer composites as a function of carbon content. J Mater Sci 17:1610–1616

    Article  CAS  Google Scholar 

  55. Sumita M, Abe H, Kayaki H, Miyasaka K (1986) Effect of melt viscosity and surface tension of polymers on the percolation threshold of conductive-particle-filled polymeric composites. J Macromol Sci Phys B25:171–184

    Article  Google Scholar 

  56. Sumita M, Asai S, Miyadera N, Jojima E, Miyasaka K (1986) Electrical conductivity of carbon black filled ethylene-vinyl acetate copolymer as a function of vinyl acetate content. Colloid Polym Sci 264:212–217

    Article  CAS  Google Scholar 

  57. Lee GJ, Suh KD, Im SS (1998) Study of electrical phenomena in carbon black–filled HDPE composite. Polym Eng Sci 38:471–477

    Article  CAS  Google Scholar 

  58. Feller JF, Linossier I, Levesque G (2002) Conductive polymer composites (CPCs): comparison of electrical properties of poly(ethylene-co-ethyl acrylate)-carbon black with poly(butylene terephthalate)/poly(ethylene-co-ethyl acrylate)-carbon black. Polym Advan Technol 13:714–724

    Article  CAS  Google Scholar 

  59. Schueler R, Petermann J, Schulte K, Wentzel HP (1997) Agglomeration and electrical percolation behavior of carbon black dispersed in epoxy resin. J Appl Polym Sci 63:1741–1746

    Article  CAS  Google Scholar 

  60. Fournier J, Boiteux G, Seytre G, Marichy G (1997) Percolation network of polypyrrole in conducting polymer composites. Synth Met 84:839–840

    Article  CAS  Google Scholar 

  61. Boiteux G, Fournier J, Issotier D, Seytre G, Marichy G (1999) Conductive thermoset composites: PTC effect. Synth Met 102:1234–1235

    Article  CAS  Google Scholar 

  62. Flandin L, Prasse T, Schueler R, Schulte K, Bauhofer W, Cavaille JY (1999) Anomalous percolation transition in carbon-black–epoxy composite materials. Phys Rev B 59:14349–14355

    Article  CAS  Google Scholar 

  63. Tang H, Chen XF, Luo YX (1996) Electrical and dynamic mechanical behavior of carbon black filled polymer composites. Eur Polym J 32:963–966

    Article  CAS  Google Scholar 

  64. Grunlan JC, Gerberich WW, Francis LF (1999) Electrical and mechanical property transitions in carbon-filled poly(vinylpyrrolidone). J Mater Res 14:4132–4135

    Article  CAS  Google Scholar 

  65. Huang JC (2002) Carbon black filled conducting polymers and polymer blends. Adv Polym Tech 21:299–313

    Article  CAS  Google Scholar 

  66. Zhang MY, Jia WT, Chen XF (1996) Influences of crystallization histories on PTC/NTC effects of PVDF/CB composites. J Appl Polym Sci 62:743–747

    Article  CAS  Google Scholar 

  67. Huang JC, Wu CL (2000) Processability, mechanical properties, and electrical conductivities of carbon black-filled ethylene-vinyl acetate copolymers. Adv Polym Technol 19:132–139

    Article  CAS  Google Scholar 

  68. Grill A (1999) Electrical and optical properties of diamond-like carbon. Thin Solid Films 355–356:189–193

    Article  Google Scholar 

  69. Chen Q, Wang L-X, Zhang Z, Yang J, Lin Z (1996) Epitaxially oriented growth of diamond on silicon by hot filament chemical vapor deposition. Appl Phys Lett 68(2):176–178

    Article  CAS  Google Scholar 

  70. Yadav BC, Kumar R (2008) Structure, properties and applications of fullerenes. Int J Nanotech Appl 2:15–24

    Google Scholar 

  71. Goel A, Howard JB, Sande JBV (2004) Size analysis of single fullerene molecules by electron microscopy. Carbon 42:1907–1915

    Article  CAS  Google Scholar 

  72. Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36:638–670

    Article  CAS  Google Scholar 

  73. Guo N, Leu MC (2012) Effect of different graphite materials on the electrical conductivity and flexural strength of bipolar plates fabricated using selective laser sintering. Int J Hydrogen Energy 37:3558–3566

    Article  CAS  Google Scholar 

  74. Matsumura K, Takahashi A, Tsukamoto J (1985) Structure and electrical conductivity of graphite fibers prepared by pyrolysis of cyanoacetylene. Synth Met 11:9–20

    Article  CAS  Google Scholar 

  75. Sadasivuni KK, Ponnamma D, Thomas S, Grohens Y (2014) Evolution from graphite to graphene elastomer composites. Prog Polym Sci 39:749–780

    Article  CAS  Google Scholar 

  76. Kraus G (1965) Interactions of elastomers and reinforcing fillers. Rubb Chem Technol 38:1070–1114

    Article  CAS  Google Scholar 

  77. Gent AN (1978) Science and technology of rubber. In: Erich FR(ed). Academic Press, Inc., New York

    Google Scholar 

  78. Wolff S, Wang M (1993) In: Donnet JB, Bansal RC, Wang M(ed) Carbon black science and technology. Marcel Dekker Inc., p 289

    Google Scholar 

  79. Janzen J (1975) On the critical conductive filler loading in antistatic composites. J Appl Phys 46:966–969

    Article  Google Scholar 

  80. Bigg DM, Bradhury JE (1981) Conducting polymers. In: Seymour RB (ed) Polymer science and technology, vol 15. Plenum, New York, p 13

    Google Scholar 

  81. Medalia AI (1986) Electrical conduction in carbon black composites. Rubb Chem Technol 59:432–454

    Article  CAS  Google Scholar 

  82. Nelson JR (1986) Morphology of electrically conductive grades of carbon black. Carbon 24:115–121

    Article  CAS  Google Scholar 

  83. Marinho B, Ghislandi M, Tkalya E, Koning CE, de With G (2012) Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder. Powder Technol 221:351–358

    Article  CAS  Google Scholar 

  84. Sánchez-González J, Macías-García A, Alexandre-Franco MF, Gómez-Serrano V (2005) Electrical conductivity of carbon blacks under compression. Carbon 43:741–747

    Article  CAS  Google Scholar 

  85. Fitzer E, Frons W, Heine M (1986) Optimization of stabilization and carbonization treatment of PAN fibres and structural characterization of the resulting carbon fibres. Carbon 24:387–395

    Article  CAS  Google Scholar 

  86. Feng L, Ning Xie, Zhong J (2014) Carbon nanofibers and their composites: a review of synthesizing, properties and applications. Materials 7:3919–3945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Al-Saleh MH, Sundararaj U (2009) A review of vapor grown carbon nanofiber/ polymer conductive composites. Carbon 47:2–22

    Article  CAS  Google Scholar 

  88. Tibbetts GG, Lake ML, Strong KL, Rice BP (2007) A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Compos Sci Technol 67:1709–1718

    Article  CAS  Google Scholar 

  89. Rao C (2005) Natotubes and nanowires. Royal Society of Chemistry, Cambridge

    Google Scholar 

  90. Kang I, Heung YY, Kim JH, Lee JW, Gollapudi R, Subramaniam S, Narasimhadevara S, Hurd D, Kirikera GR, Shanov V, Schulz MJ, Shi D, Boerio J, Mall S, Ruggles-Wren M (2006) Introduction to carbon nanotube and nanofiber smart materials. Composites Part B Eng 37(6):382–394

    Article  CAS  Google Scholar 

  91. Baughman RH, Zakhidov AA, Heer WAD (2002) Carbon nanotubes–the route toward applications. Science 297(5582):787–792

    Article  CAS  PubMed  Google Scholar 

  92. Iijima S (2002) Carbon nanotubes: past, present, and future. Phys B 323:1–5

    Article  CAS  Google Scholar 

  93. Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912

    Article  CAS  Google Scholar 

  94. Dillon AC, Yudasaka M, Dresselhaus MS (2004) Employing raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials. J Nanosci Nanotechnol 4(7):691–703

    Article  CAS  PubMed  Google Scholar 

  95. Baddour C, Briens C (2005) Carbon nanotube synthesis: a review. Int J Chem React Eng 3(1):1–20

    Google Scholar 

  96. Sundaray B, Subramanian V, Natarajan TS, Krishnamurthy K (2006) Electrical conductivity of a single electrospun fiber of poly(methyl methacrylate) and multiwalled carbon nanotube nanocomposite. Appl Phys Lett 88:143114

    Article  CAS  Google Scholar 

  97. Deng J, Ding X, Zhang W, Peng Y, Wang J, Long X et al (2002) Carbon nanotube-polyaniline hybrid materials. Eur Polym J 38:2497–2501

    Article  CAS  Google Scholar 

  98. Long Y, Chen Z, Zhang X, Zhang J, Liu Z (2004) Synthesis and electrical properties of carbon nanotube polyaniline composites. Appl Phys Lett 85:1796–1798

    Article  CAS  Google Scholar 

  99. Wu TM, Lin SH (2006) Characterization and electrical properties of polypyrrole/multiwalled carbon nanotube composites synthesized by in situ chemical oxidative polymerization. J Polym Sci Part B Polym Phys 44:1413–1418

    Article  CAS  Google Scholar 

  100. Karim MR, Lee CJ, Chowdhury AMS, Nahar N, Lee MS (2007) Radiolytic synthesis of conducting polypyrrole/carbon nanotube composites. Mater Lett 61:1688–1692

    Article  CAS  Google Scholar 

  101. Ramasubramaniam R, Chen J, Liu H (2003) Homogeneous carbon nanotube/polymer composites for electrical applications. Appl Phys Lett 83:2928–2930

    Article  CAS  Google Scholar 

  102. Karim MR, Lee CJ, Lee MS (2006) Synthesis and characterization of conducting polythiophene/carbon nanotubes composites. J Polym Sci Part A: Polym Chem 44:5283–5290

    Article  CAS  Google Scholar 

  103. Grimes CA, Mungle C, Kouzoudis D, Fang S, Eklund PC (2000) The 500 MHz to 5.50 GHz complex permittivity spectra of single-wall carbon nanotube-loaded polymer composites. Chem Phys Lett 319:460–464

    Article  CAS  Google Scholar 

  104. Andres PL, Ramirez R, Verges JA (2008) Strong covalent bonding between two graphene layers. Phys Rev B 77:045403/1–045403/15

    Google Scholar 

  105. Nemes-Incze P, Osvatha Z, Kamarasb K, Biro LP (2008) Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy. Carbon 46:1435–1442

    Article  CAS  Google Scholar 

  106. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355

    Article  CAS  Google Scholar 

  107. Gomez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, Kern K (2007) Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett 7:3499–3503

    Article  CAS  PubMed  Google Scholar 

  108. Wu ZS, Ren W, Gao L, Zhao J, Chen Z, Liu B, Tang D, Yu B, Jiang C, Cheng HM (2009) Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 3:411–417

    Article  CAS  PubMed  Google Scholar 

  109. Ansari S, Giannelis EP (2009) Functionalized graphene sheet—poly(vinylidene fluoride) conductive nanocomposites. J Polym Sci Part B Polym Phys 47:888–897

    Article  CAS  Google Scholar 

  110. Du J, Zhao L, Zeng Y, Zhang L, Li F, Liu P, Liu C (2011) Comparison of electrical properties between multi-walled carbon nanotube and graphene nanosheet/high density polyethylene composites with a segregated network structure. Carbon 49:1094–1100

    Article  CAS  Google Scholar 

  111. Wang C, Guo Z-X, Fu S, Wu W, Zhu D (2004) Polymers containing fullerene or carbon nanotube structures. Prog Polym Sci 29:1079–1141

    Article  CAS  Google Scholar 

  112. Huang J-C (2002) Carbon black filled conducting polymers and polymer blends. Adv Polym Technol 21(4):299–313

    Article  CAS  Google Scholar 

  113. Spahr ME, Gilardi R, Bonacchi D (2013) Carbon black for electrically conductive polymer applications. Encyclopedia of polymers and composites. Springer, Berlin. https://doi.org/10.1007/978-3-642-37179-0_32-1

    Google Scholar 

  114. Sanjinés R, Abad MD, Vâju C, Smajda R, Mionić M, Magrez A (2011) Electrical properties and applications of carbon based nanocomposite materials: an overview. Surf Coat Technol 206:727–733

    Article  CAS  Google Scholar 

  115. Spitalsky Z, Tasisb D, Papagelis K, Galiotis C (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401

    Article  CAS  Google Scholar 

  116. Mutiso RM, Winey KI (2015) Electrical properties of polymer nanocomposites containingrod-like nanofillers. Prog Polym Sci 40:63–84

    Article  CAS  Google Scholar 

  117. Ma P-C, Siddiqui NA, Marom G, Kim J-K (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos A 41:1345–1367

    Article  CAS  Google Scholar 

  118. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375

    Article  CAS  Google Scholar 

  119. Khanam PN, Ponnamma D, AL-Madeed MA (2015) Electrical properties of graphene polymer nanocomposites. In: Sadasivuni KK et al (eds) Graphene-based polymer nanocomposites in electronics. Springer series on polymer and composite materials. Springer International Publishing, Switzerland, pp 25–47. https://doi.org/10.1007/978-3-319-13875-6_2

    Google Scholar 

  120. Rahaman M, Chaki TK, Khastgir D (2011) Development of high performance EMI shielding material from EVA, NBR, and their blends: effect of carbon black structure. J Mater Sci 46(11):3989–3999

    Article  CAS  Google Scholar 

  121. Sohi NJS, Rahaman M, Khastgir D (2011) Dielectric property and electromagnetic interference shielding effectiveness of ethylene vinyl acetate based conductive composites: effect of different type of carbon fillers. Polym Compos 32:1148–1154

    Article  CAS  Google Scholar 

  122. Nayak L, Rahaman M, Khastgir D, Chaki TK (2011) Thermal and electrical properties of carbon nanotubes based polysulfone nanocomposites. Polym Bull 67:1029–1044

    Article  CAS  Google Scholar 

  123. Rahaman M, Chaki TK, Khastgir D (2011) High performance EMI shielding materials based on short carbon fiber filled ethylene vinyl acetate copolymer, acrylonitrile butadiene copolymer, and their blends. Polym Compos 32(11):1790–1805

    Article  CAS  Google Scholar 

  124. Ram R, Rahaman M, Khastgir D (2014) Mechanical, electrical and dielectric properties of polyvinylidene fluoride/short carbon fiber composites with low electrical percolation threshold. J Appl Polym Sci 131(3):39866

    Article  CAS  Google Scholar 

  125. Huang J-C (2002) Carbon black filled conducting polymers and polymer blends. Adv Polym Technol 21:299–313

    Article  CAS  Google Scholar 

  126. Li ZH, Zhang J, Chen SJ (2008) Effects of carbon blacks with various structures on vulcanization and reinforcement of filled ethylene-propylene-diene rubber. eXPRESS Polym Lett 2(10):695–704

    Article  CAS  Google Scholar 

  127. Rahaman M, Thomas SP, Hussein IA, De SK (2013) Dependence of electrical properties of polyethylene nanocomposites on aspect ratio of carbon nanotubes. Polym Compos 34:494–499

    Article  CAS  Google Scholar 

  128. Shehzad K, Dang Z-M, Ahmad MN, Sagar R-UrR, Farooq MU, Wang T-B (2013) Effects of carbon nanotubes aspect ratio on the qualitative and quantitative aspects of frequency response of electrical conductivity and dielectric permittivity in the carbon nanotube/polymer composites. Carbon 54:105–112

    Article  CAS  Google Scholar 

  129. Guo J, Liu Y, Prada-Silvy R, Tan Y, Azad S, Krause B, Pötschke P, Grady BP (2014) Aspect ratio effects of multi-walled carbon nanotubes on electrical, mechanical, and thermal properties of polycarbonate/MWCNT composites. J Polym Sci Part B Polym Phys 52:73–83

    Article  CAS  Google Scholar 

  130. Thomas SP, Abdullateef AA, Al-Harthi MA, Atieh MA, De SK, Rahaman M, Chaki TK, Khastgir D, Bandyopadhyay S (2012) Electrical properties of natural rubber nanocomposites: effect of 1-octadecanol functionalization of carbon nanotubes. J Mater Sci 47:3344–3349

    Article  CAS  Google Scholar 

  131. Jiang Mei-Juan, Dang Zhi-Min, Yao Sheng-Hong, Bai Jinbo (2008) Effects of surface modification of carbon nanotubes on the microstructure and electrical properties of carbon nanotubes/rubber nanocomposites. Chem Phys Lett 457:352–356

    Article  CAS  Google Scholar 

  132. Sulong AB, Muhamad N, Sahari J, Ramli R, Deros BM, Park J (2009) Electrical conductivity behaviour of chemical functionalized MWCNTs epoxy nanocomposites. Eur J Sci Res 29(1):13–21

    Google Scholar 

  133. Park O-K, Kim S-G, You N-H, Ku B-C, Hui D, Lee JH (2014) Synthesis and properties of iodo functionalized graphene oxide/polyimide nanocomposites. Compos B 56:365–371

    Article  CAS  Google Scholar 

  134. White S, DiDonna B, Mu M, Lubensky T, Winey K (2009) Simulations and electrical conductivity of percolated networks of finite rods with various degrees of axial alignment. Phys Rev B 79:024301/1–024301/17

    Google Scholar 

  135. Khan SU, Pothnis JR, Kim J-K (2013) Effects of carbon nanotube alignment on electrical and mechanical properties of epoxy nanocomposites. Compos A 49:26–34

    Article  CAS  Google Scholar 

  136. Yousefi N, Gudarzi MM, Zheng QB, Aboutalebi SH, Sharif F, Kim JK (2012) Self alignment and high electrical conductivity of ultra large graphene oxide/polyurethane nanocomposites. J Mater Chem 22:12709–12717

    Article  CAS  Google Scholar 

  137. Dalmas F, Dendievel R, Chazeau L, Cavaille J, Gauthier C (2006) Carbon nanotube-filled polymer composites. Numerical simulation of electrical conductivity in three-dimensional entangled fibrous networks. Acta Mater 54:2923–2931

    Article  CAS  Google Scholar 

  138. Li C, Thostenson E, Chou T (2008) Effect of nanotube waviness on the electrical conductivity of carbon nanotube-based composites. Compos Sci Technol 68:1445–1452

    Article  CAS  Google Scholar 

  139. Kyrylyuk AV, van der Schoot P (2008) Continuum percolation of carbon nanotubes in polymeric and colloidal media. Proc Natl Acad Sci USA 105:8221–8226

    Article  CAS  Google Scholar 

  140. Sumita M, Sakata A, Asai S, Miyasaka K, Nakgawa H (1991) Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym Bull 25:265–271

    Article  CAS  Google Scholar 

  141. Sau KP, Chaki TK, Khastgir D (1998) Carbon fiber filled conductive composites based on nitrile rubber (NBR), ethylene propylene diene rubber (EPDM) and their blend. Polymer 39:6461–6471

    Article  CAS  Google Scholar 

  142. Sau KP, Chaki TK, Khastgir D (1997) Conductive rubber composites from different blends of ethylene-propylene-diene rubber and nitrile rubber. J Mater Sci 32:5717–5724

    Article  CAS  Google Scholar 

  143. Pöschke P, Dudkin SM, Alig I (2003) Dielectric spectroscopy on melt processed polycarbonate–multiwalled carbon nanotube composites. Polymer 44:5023–5030

    Article  CAS  Google Scholar 

  144. Mǐcǔsik M, Omastova M, Krupa I, Prokěs J, Pissis P, Logakis E et al (2009) A comparative study on the electrical and mechanical behaviour of multi-walled carbon nanotube composites prepared by diluting a masterbatch with various types of polypropylene. J Appl Polym Sci 113:2536–2551

    Article  CAS  Google Scholar 

  145. Paul DR, Newman S (eds) (1978) Polymer blends, vol 1, 2. Academic Press, Inc., New York

    Google Scholar 

  146. Sirkar AK, Lamond TG (1973) Carbon black transfer in blends of cis poly(butadiene) with other elastomers. Rubb Chem Technol 46:178–191

    Article  Google Scholar 

  147. Meyer J (1973) Glass transition temperature as a guide to selection of polymers suitable for PTC materials. Polym Eng Sci 13:462–468

    Article  CAS  Google Scholar 

  148. Sichel EK, Gittleman JI, Sheng P (1978) Transport properties of the composite material carbon-poly(vinyl chloride). Phys Rev B Condensed Mater B18:5712–5716

    Article  Google Scholar 

  149. Jeuskens G, Gielens JL, Geshef D, Deltour R (1987) The electrical conductivity of polymer blends filled with carbon-black. Eur Polym J 23:993–995

    Article  Google Scholar 

  150. Sirkar AK (1981) Softer conductive rubber compounds by elastomer blending. Rubb Chem Technol 54:820–834

    Article  Google Scholar 

  151. Voet A (1980) Temperature effect of electrical resistivity of carbon black filled polymers. Rubb Chem Technol 54:42–50

    Article  Google Scholar 

  152. Bhattacharya SK, Basu S, De SK (1980) Effect of temperature on the electrical conductivity of poly(vinyl chloride)–copper composites. J Appl Polym Sci 25:111–118

    Article  CAS  Google Scholar 

  153. Amin M, Hassan HH, Abdel-Bary EM (1974) Conductivity of carbon black-loaded styrene–butadiene rubber. J Polym Sci Polym Chem 12:2651–2657

    Article  CAS  Google Scholar 

  154. Abdel-Bary EM, Amin M, Hassan HH (1979) Factors affecting electrical conductivity of carbon black-loaded rubber. II. Effect of concentration and type of carbon black on electrical conductivity of SBR. J Polym Sci Polym Chem 17:2163–2172

    Article  CAS  Google Scholar 

  155. Amin M, Hassan HH, Abdel-Bary EM (1989) Influence of solvent penetration on the electrical conductance of pre-extended FEF carbon black-loaded rubbers. J Appl Polym Sci 37:1209–1219

    Article  CAS  Google Scholar 

  156. Allak HM, Brinkman AW, Woods J (1993) I-V characteristics of carbon black-loaded crystalline polyethylene. J Mater Sci 28:117–120

    Article  Google Scholar 

  157. Aminabhavi TM, Cassidy PE, Thomson CM (1990) electrical resistivity of carbon-black-loaded rubbers. Rubb Chem Technol 63:451–471

    Article  CAS  Google Scholar 

  158. Klason C, Kubat J (1975) Anomalous behavior of electrical conductivity and thermal noise in carbon black-containing polymers at Tg and Tm. J Appl Polym Sci 19:831–845

    Article  CAS  Google Scholar 

  159. Ghofraniha M, Saovey R (1988) Electrical conductivity of polymers containing carbon black. Polym Eng Sci 28:58–63

    Article  CAS  Google Scholar 

  160. Langley M (1973) Carbon fiber in engineering. McGraw Hill, London

    Google Scholar 

  161. Bhattacharya SK, Chaklader AC (1982) Review on metal-filled plastics. part1: electrical conductivity. Polym Plast Technol Eng 19:21–51

    Article  CAS  Google Scholar 

  162. He XJ, Du JH, Ying Z, Cheng HM (2005) Positive temperature coefficient effect in multiwalled carbon nanotube/high-density polyethylene composites. Appl Phys Lett 86:062112

    Article  CAS  Google Scholar 

  163. Rahaman M, Chaki TK, Khastgir D (2013) Control of the temperature coefficient of the DC resistivity in polymer-based composites. J Mater Sci 48:7466–7475

    Article  CAS  Google Scholar 

  164. Park S-J, Seo M-K, Lee J-R (2001) PTC/NTC behaviors of nanostructured carbon black-filled HDPE polymer composites. Carbon Sci 2(3&4):159–164

    Google Scholar 

  165. Feng J, Chan C-M (2000) Positive and negative temperature coefficient effects of an alternating copolymer of tetrafluoroethylene–ethylene containing carbon black-filled HDPE particles. Polymer 41:7279–7282

    Article  CAS  Google Scholar 

  166. Feng J, Chan C-M (2000) Double positive temperature coefficient effects of carbon black-filled polymer blends containing two semicrystalline polymers. Polymer 41:4559–4565

    Article  CAS  Google Scholar 

  167. Saito S, Sasabe H, Nakajima T, Yada K (1968) Dielectric relaxation and electrical conduction of polymers as a function of pressure and temperature. J Polym Sci Part A-2 Polym Phys 6(7):1297–1315

    Article  CAS  Google Scholar 

  168. Pramanik PK, De SK, Saha TN, Khastgir D (1990) Pressure-sensitive electrically conductive nitrile rubber composites filled with particulate carbon black and short carbon fiber. J Mater Sci 25:3848–3853

    Article  CAS  Google Scholar 

  169. Akakabe M (1986) JP 61, 32, 913 [86, 32, 913] C1 HO 1B13/00 15 Feb. Appl 84/156, 099; 25 July 1984, 4 p

    Google Scholar 

  170. Bickley AC, Donnet G (1988) Eur. Pat. Appl. EP 283, 193 (C1 HO 1B1/24) 02 Nov. GB Appl 8719, 355, 21 April 1987, 10 p

    Google Scholar 

  171. Moshimo S, Nagayasu S, Yamaguch Y, Noguchi T, Nakajima M, Kakluchi H, Tanida K (1987) EP 207, 450 (CI HO1B1/24) 07 Jan. JP Appl 85/147, 160;03 July 185, 58 p

    Google Scholar 

  172. Das NC, Chaki TK, Khastgir D (2002) Effect of processing parameters, applied pressure and temperature on the electrical resistivity of rubber-based conductive composites. Carbon 40:807–816

    Article  CAS  Google Scholar 

  173. Rahaman M, Chaki TK, Khastgir D (2013) Polyaniline, ethylene vinyl acetate semi-conductive composites as pressure sensitive sensor. J Appl Polym Sci 128:161–168

    Article  CAS  Google Scholar 

  174. Rahaman M, Chaki TK, Khastgir D (2014) Polyaniline/ethylene vinyl acetate composites as dielectric sensor. Polym Eng Sci 54:1632–1639

    Article  CAS  Google Scholar 

  175. Mahmoud WE, El-Lawindy AMY, El-Eraki MH, Hassan HH (2007) Butadiene acrylonitrile rubber loaded fast extrusion furnace black as a compressive strain and pressure sensors. Sens Actuators A 136:229–233

    Article  CAS  Google Scholar 

  176. Agari Y, Ueda A, Nagai S (1991) Thermal conductivities of composites in several types of dispersion systems. J Appl Polym Sci 42:1665–1669

    Article  CAS  Google Scholar 

  177. Cembrola RJ (1982) The relationship of carbon black dispersion to electrical resistivity and vulcanizate physical properties. Polym Eng Sci 22:601–609

    Article  CAS  Google Scholar 

  178. Nakajima N, Harrell ER (1984) Contributions of elastomer behavior to mechanisms of carbon black dispersion. Rubb Chem Technol 57:153–167

    Article  CAS  Google Scholar 

  179. Li J, Ma PC, Chow WS, To CK, Tang BZ, Kim JK (2007) Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv Funct Mater 17:3207–3215

    Article  CAS  Google Scholar 

  180. Du F, Fischer JE, Winey KI (2003) Coagulation method for preparing single-walled carbon nanotube/poly(methyl methacrylate) composites and their modulus, electrical conductivity, and thermal stability. J Polym Sci, Part B: Polym Phys 41:3333–3338

    Article  CAS  Google Scholar 

  181. Kashiwagi T, Fagan J, Douglas J, Yamamoto K, Heckert A, Leigh S, Obrzut J, Du F, Lingibson S, Mu M, Winey KI, Haggenmueller R (2007) Relationship between dispersion metric and properties of PMMA/SWNT nanocomposites. Polymer 48:4855–4866

    Article  CAS  Google Scholar 

  182. Bryning MB, Islam MF, Kikkawa JM, Yodh AG (2005) Very low conductivity threshold in bulk isotropic single-walled carbon nanotube–epoxy composites. Adv Mater 17:1186–1191

    Article  CAS  Google Scholar 

  183. Martin CA, Sandler JKW, Shaffer MSP, Schwarz MK, Bauhofer W, Schulte K, Windle AH (2004) Formation of percolating networks in multi-wall carbon-nanotube? Epoxy composites. Compos Sci Technol 64:2309–2316

    Article  CAS  Google Scholar 

  184. Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Ultra-low electrical percolation threshold in carbon-nanotube–epoxy composites. Polymer 44:5893–5899

    Article  CAS  Google Scholar 

  185. Pegel S, Pötschke P, Villmow T, Stoyan D, Heinrich G (2009) Spatial statistics of carbon nanotube polymer composites. Polymer 50:2123–2132

    Article  CAS  Google Scholar 

  186. Abdel-Bary EM, Amin M, Hassan HH (1977) Factors affecting electrical conductivity of carbon black-loaded rubber I. Effect of milling conditions and thermal-oxidative aging on electrical conductivity of HAF carbon black-loaded styrene–butadiene rubber. J Polym Sci Polym Chem 15:197–201

    Article  CAS  Google Scholar 

  187. Pramanik PK, Saha TN, Khastgir D (1992) Effect of some processing parameters on the resistivity of conductive nitrile rubber composites. Plast Rubb Compos Process Appl 17:179–185

    CAS  Google Scholar 

  188. Huang YY, Terentjev EM (2012) Dispersion of carbon nanotubes: mixing, sonication, stabilization, and composite properties. Polymers 4:275–295

    Article  CAS  Google Scholar 

  189. Kim S, Lee JW, Hong I-K, Lee S (2014) Electrical conductivity enhancement of polycarbonate/poly(styrene-co-acrylonitrile)/carbon nanotube composites by high intensity ultrasound. Macromol Res 22(2):154–159

    Article  CAS  Google Scholar 

  190. Fernandez DR, Marzocca AJ (1991) Analysis of resistivity in a rubber compound. Rubb Chem Technol 64:501–509

    Article  Google Scholar 

  191. Thomson CM, Besuden TW, Beumel LL (1988) Resistivity of rubber as a function of mold pressure. Rubb Chem Technol 61:828–841

    Article  Google Scholar 

  192. Nasr GM, Amin M, Osman HH, Badway MM (1989) Influence of hydrostatic pressure on the electrical properties of unvulcanized FEF-loaded SBR. J Appl Polym Sci 37:1327–1337

    Article  CAS  Google Scholar 

  193. Badawy MM, Nasr GM (1997) Effect of molding pressure on the electrical conductivity of conductive NBR/PVC composites. Polym Test 16:155–164

    Article  CAS  Google Scholar 

  194. Boonstra BB (1977) Resistivity of unvulcanized compounds of rubber and carbon black. Rubb Chem Technol 50:194–210

    Article  CAS  Google Scholar 

  195. Voet A, Sirkar AK, Mullens TJ (1969) Electrical properties of stretched carbon black loaded vulcanizates. Rubb Chem Technol 42:874–891

    Article  CAS  Google Scholar 

  196. Voet A, Morawaki JC (1974) Dynamic mechanical and electrical properties of vulcanizates at elongations up to sample rupture. Rubb Chem Technol 47:765–777

    Article  CAS  Google Scholar 

  197. Burton LC, Hwang K, Zhang T (1989) Dynamic electrical and electromechanical properties of carbon-black loaded rubber. Rubb Chem Technol 62:838–849

    Article  CAS  Google Scholar 

  198. Pramanik M, Saha TN, Khastagir D (1993) Effect of extensional strain on the resistivity of electrically conductive nitrile-rubber composites filled with carbon filler. J Mater Sci 28:3539–3546

    Article  CAS  Google Scholar 

  199. Hashem AA, Ghani AA, Eatah AI (1991) Effect of preextension on electrical conductivity and physicomechanical properties of butyl rubber (IIR) loaded with different types of carbon black. J Appl Polym Sci 42:1081–1085

    Article  CAS  Google Scholar 

  200. Amin M, Nasr GM, Hassan HH, Ei-Guiziri S, Abdem MA (1989) Investigation on the dependence of the electrical conductivity of FEF/SBR vulcanizates on the cyclic strain. Polym Bull 22:413–420

    Article  CAS  Google Scholar 

  201. Hasan HH, Khairy SA, El-Guiziri S, Abdel-Moneim HM (1991) Effect of tensile deformation on the electrical conductivity of SRF black-loaded SBR blend. J Appl Polym Sci 42:2879–2883

    Article  Google Scholar 

  202. Barrau S, Demont P, Peigney A, Laurent C, Lacabanne C (2003) DC and AC conductivity of carbon nanotubes-polyepoxy composites. Macromolecules 36:5187–5194

    Article  CAS  Google Scholar 

  203. McLachlan DS, Chiteme C, Park C, Wise KE, Lowther SE, Lillehei PT, Siochi EJ, Harrison JS (2005) AC and DC percolative conductivity of single wall carbon nanotube polymer composites. J Polym Sci Part B Polym Phys 43:3273–3287

    Article  CAS  Google Scholar 

  204. Elimat ZM (2006) AC electrical conductivity of poly(methyl methacrylate)/carbon black composite. J Phys D Appl Phys 39:2824–2828

    Article  CAS  Google Scholar 

  205. Jäger KM, McQueen DH, Tchmutin IA, Ryvkina NG, Klüppel M (2001) Electron transport and ac electrical properties of carbon black polymer composites. J Phys D Appl Phys 34:2699–2707

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafizur Rahaman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rahaman, M., Aldalbahi, A., Nayak, L., Giri, R. (2019). Electrical Conductivity of Polymer–Carbon Composites: Effects of Different Factors. In: Rahaman, M., Khastgir, D., Aldalbahi, A. (eds) Carbon-Containing Polymer Composites. Springer Series on Polymer and Composite Materials. Springer, Singapore. https://doi.org/10.1007/978-981-13-2688-2_5

Download citation

Publish with us

Policies and ethics