Classification of Normal and Abnormal Retinal Images by Using Feature-Based Machine Learning Approach

  • Pratima YadavEmail author
  • Nagendra Pratap Singh
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 524)


The human eye is one of the most beautiful and important sense organs of human body as it allows visual perception by reacting to light and pressure. Human eyes are capable of differentiating approximately 10 million colors. It contains more than 2 million tissues and cells. Along with these entire specialties, human eyes are the most delicate and sensitive organ. If not taken proper care, it may be infected with various diseases like glaucoma, myopia, hyper-myopia, diabetic retinopathy, age-related macular disease. Therefore, early-stage detection of these diseases could help in curing them completely and prevent from complete blindness. In this paper, we propose an approach to classify the normal (healthy) and abnormal (disease-infected) retinal images by using retinal image feature-based machine learning classification approach. The performance of proposed approach by using SVM classifier is 77.3%, which is found better with respect to the other classifiers like k-NN, linear discriminant, quadratic discriminant and decision tree classifiers.


Retina images Texture features Machine learning and classification 


  1. 1.
    World Health Organization et al. (2016). Global initiative for the elimination of avoidable blindness: action plan 2006–2011. 2007. F.: Journal 2(5), 99–110.Google Scholar
  2. 2.
    Foster, A., & Resnikoff, S. (2005). The impact of vision 2020 on global blindness. Eye, 19(10), 1133–1135.CrossRefGoogle Scholar
  3. 3.
    Abràmoff, M. D., Garvin, M. K., & Sonka, M. (2010). Retinal imaging and image analysis. IEEE Reviews in Biomedical Engineering, 3, 169–208.CrossRefGoogle Scholar
  4. 4.
    Bock, R., Meier, J., Michelson, G., Nyul, L. G., & Hornegger, J. (2007). Classifying glaucoma with image-based features from fundus photographs. In Joint Pattern Recognition Symposium (pp. 355–364). Springer.Google Scholar
  5. 5.
    Nayak, J., Acharya, R., Bhat, P. S., Shetty, N., & Lim, T. C. (2009). Automated diagnosis of glaucoma using digital fundus images. Journal of Medical Systems, 33(5), 337.CrossRefGoogle Scholar
  6. 6.
    Zhang, Z., Yin, F. S., Liu, J., Wong, W. K., Tan, N. M., Lee, B. H., et al. (2010). Origa-light: an online retinal fundus image database for glaucoma analysis and research. In 2010 Annual International Conference of the IEEE on Engineering in Medicine and Biology Society (EMBC) (pp. 3065–3068). IEEE.Google Scholar
  7. 7.
    Mookiah, M. R. K., Acharya, U. R., Lim, C. M., Petznick, A., & Suri, J. S. (2012). Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features. Knowledge-Based Systems, 33, 73–82.CrossRefGoogle Scholar
  8. 8.
    Acharya, R., Chua, C. K., Ng, E. Y. K., Yu, W., & Chee, C. (2008). Application of higher order spectra for the identification of diabetes retinopathy stages. Journal of Medical Systems, 32(6), 481–488.CrossRefGoogle Scholar
  9. 9.
    Osareh, A., Shadgar, B., & Markham, R. (2009). A computational intelligence-based approach for detection of exudates in diabetic retinopathy images. IEEE Transactions on Information Technology in Biomedicine, 13(4), 535–545.CrossRefGoogle Scholar
  10. 10.
    Xiaohui, Z., & Chutatape, A. (2004). Detection and classification of bright lesions in color fundus images. In 2004 International Conference on Image Processing, 2004. ICIP’04 (Vol. 1, pp. 139–142). IEEE.Google Scholar
  11. 11.
    Ravishankar, S., Jain, A., & Mittal, A. (2009). Automated feature extraction for early detection of diabetic retinopathy in fundus images. In 2009. CVPR 2009. IEEE Conference on Computer Vision and Pattern Recognition (pp. 210–217). IEEE.Google Scholar
  12. 12.
    Garcia, M., Sanchez, C. I., Lopez, M. I., Abasolo, D., & Hornero, R. (2009). Neural network based detection of hard exudates in retinal images. Computer Methods and Programs in Biomedicine, 93(1), 9–19.CrossRefGoogle Scholar
  13. 13.
    Sopharak, A., Dailey, M. N., Uyyanonvara, B., Barman, S., Williamson, T., Nwe, K. T., et al. (2010). Machine learning approach to automatic exudate detection in retinal images from diabetic patients. Journal of Modern Optics, 57(2), 124–135.CrossRefGoogle Scholar
  14. 14.
    Jayanthi, D., Devi, N., & SwarnaParvathi, S. (2010). Automatic diagnosis of retinal diseases from color retinal images. arXiv:1002.2408.
  15. 15.
    Verma, K., Deep, P., & Ramakrishnan, A. G. (2011). Detection and classification of diabetic retinopathy using retinal images. In 2011 Annual IEEE on India Conference (INDICON) (pp. 1–6). IEEE.Google Scholar
  16. 16.
    Narasimhan, K., Neha, V. C., & Vijayarekha, K. (2012). An efficient automated system for detection of diabetic retinopathy from fundus images using support vector machine and Bayesian classifiers. In 2012 International Conference on Computing, Electronics and Electrical Technologies (ICCEET) (pp. 964–969). IEEE.Google Scholar
  17. 17.
    Harangi, B., Antal, B., & Hajdu, A. (2012). Automatic exudate detection with improved naive-Bayes classifier. In 2012 25th International Symposium on Computer-Based Medical Systems (CBMS) (pp. 1–4). IEEE.Google Scholar
  18. 18.
    Mookiah, M. R. K., Acharya, U. R., Martis, R. J., Chua, C. K., Lim, C. M., Ng, E. Y. K., et al. (2013). Evolutionary algorithm based classifier parameter tuning for automatic diabetic retinopathy grading: a hybrid feature extraction approach. Knowledge-Based Systems, 39, 9–22.CrossRefGoogle Scholar
  19. 19.
    Gandhi M., & Dhanasekaran, R. (2013). Diagnosis of diabetic retinopathy using morphological process and svm classifier. In 2013 International Conference on Communications and Signal Processing (ICCSP) (pp. 873–877). IEEE.Google Scholar
  20. 20.
    Roychowdhury, S., Koozekanani, D. D., & Parhi, K. K. (2014). Dream: diabetic retinopathy analysis using machine learning. IEEE Journal of Biomedical and Health Informatics, 18(5), 1717–1728.CrossRefGoogle Scholar
  21. 21.
    Akram, M. U., Tariq, A., Khan, S. A., & Javed, M. Y. (2014). Automated detection of exudates and macula for grading of diabetic macular edema. Computer Methods and Programs in Biomedicine, 114(2), 141–152.CrossRefGoogle Scholar
  22. 22.
    Welikala, R. A., Dehmeshki, J., Hoppe, A., Tah, V., Mann, S., Williamson, T. H., et al. (2014). Automated detection of proliferative diabetic retinopathy using a modified line operator and dual classification. Computer Methods and Programs in Biomedicine, 114(3), 247–261.CrossRefGoogle Scholar
  23. 23.
    Ricci, E., & Perfetti, R. (2007). Retinal blood vessel segmentation using line operators and support vector classification. IEEE Transactions on Medical Imaging, 26(10), 1357–1365.CrossRefGoogle Scholar
  24. 24.
    Singh, N. P., & Srivastava, R. (2016). Retinal blood vessels segmentation by using gumbel probability distribution function based matched filter. Computer Methods and Programs in Biomedicine, 129, 40–50.CrossRefGoogle Scholar
  25. 25.
    Singh, N. P., & Srivastava, R. (2017). Weibull probability distribution function-based matched filter approach for retinal blood vessels segmentation. In Proceedings of International Conference on Computational Intelligence 2015, Advances in Computational Intelligence (pp. 427–437). Springer.Google Scholar
  26. 26.
    Singh, N. P., & Srivastava, R. (2016). Segmentation of retinal blood vessels by using a matched filter based on second derivative of Gaussian. International Journal of Biomedical Engineering and Technology, 21(3), 229–246.CrossRefGoogle Scholar
  27. 27.
    Hoover, A. D., Kouznetsova, V., & Goldbaum, M. (2000). Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Transactions on Medical Imaging, 19(3), 203–210.CrossRefGoogle Scholar
  28. 28.
    Soares, J. V., Leandro, J. J., Cesar, R. M., Jelinek, H. F., & Cree, M. J. (2006). Retinal vessel segmentation using the 2-D gabor wavelet and supervised classification. IEEE Transactions on Medical Imaging, 25(9), 1214–1222.CrossRefGoogle Scholar
  29. 29.
    Li, H., & Chutatape, O. (2004). Automated feature extraction in color retinal images by a model based approach. IEEE Transactions on Biomedical Engineering, 51(2), 246–254.CrossRefGoogle Scholar
  30. 30.
    Goldbaum, M., Moezzi, S., Taylor, A., Chatterjee, S., Boyd, J., Hunter, E., et al. (1996). Automated diagnosis and image understanding with object extraction, object classification, and inferencing in retinal images. In 1996 Proceedings, International Conference on Image Processing (Vol. 3, pp. 695–698). IEEE.Google Scholar
  31. 31.
    Seo, J. W., & Kim, S. D. (2013). Novel PCA-based color-to-gray image conversion. In 2013 20th IEEE International Conference on Image Processing (ICIP) (pp. 2279–2283). IEEE.Google Scholar
  32. 32.
    Laws, K. I. (1980). Rapid texture identification. In Image Processing for Missile Guidance, International Society for Optics and Photonics (Vol. 238, pp. 376–382).Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of CSEMMM University of TechnologyGorakhpurIndia

Personalised recommendations