Skip to main content

Introduction

  • Chapter
  • First Online:
Flexonics for Manufacturing and Robotics

Part of the book series: Research on Intelligent Manufacturing ((REINMA))

  • 369 Accesses

Abstract

Flexible mechatronics is an electro-mechanical system composed of flexible elements which are subjected to large deformations and capable of transferring forces, torques and energies. They have been widely used in many engineering applications in terms of compliant mechanisms such as snap-fits (S. Genc, R.W. Messler, G.A. Gabriele, Concurrent Eng.-Res. Appl. 10(2), 84–93 (1998)), micro grippers (V. Seidemann, S. Butefisch, S. Buttgenbach, Sens. Actuat. A-Phys. 97-8, 457–461 (2002)) and flexure hinges (B.-J. Yi, G.B. Chung, H.Y. Na, W.K. Kim, I.H. Suh, Robot. Autom. 19(4), 604–612 (2003)). In recent years, flexible or compliant devices have attracted more and more attention to biology related applications, such as flexible electronics, bio inspired robotics and food processing industry, because compliant components exhibit many advantages in dealing with highly deformable biological materials over rigid engineering tools in terms of simple structures and light weights.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Genc, R.W. Messler, G.A. Gabriele, A systematic approach to integral snap-fit attachment design. Concurrent Eng.-Res. Appl. 10(2), 84–93 (1998)

    Google Scholar 

  2. V. Seidemann, S. Butefisch, S. Buttgenbach, Fabrication and investigation of in-plane compliant su8 structures for mems and their application to micro valves and micro grippers. Sens. Actuat. A-Phys. 97-8, 457–461 (2002)

    Google Scholar 

  3. B.-J. Yi, G.B. Chung, H.Y. Na, W.K. Kim, I.H. Suh, Design and experiment of a 3-DOF parallel micromechanism utilizing flexure hinges. IEEE Trans. Robot. Autom. 19(4), 604–612 (2003)

    Google Scholar 

  4. K.-M. Lee, J. Guo, Biological joint kinematic model for flexible deboning automation, presented at the International Symposium on Flexible Automation (ISFA) (Atlanta, GA, USA, 2008)

    Google Scholar 

  5. J. Guo, K.-M. Lee, Effects of musculoskeleton model on flexible deboning automation, presented at the International Symposium on Flexible Automation (ISFA) (Atlanta, GA, USA, 2008)

    Google Scholar 

  6. L.L. Howell, Compliant Mechanisms, 1st edn. (Wiley, New York, 2001)

    Google Scholar 

  7. J.M. Gere, S.P. Timoshenko, Mechanics of Materials, 4th edn. (PWS, Boston, 1997)

    Google Scholar 

  8. S.P. Timoshenko, On the transverse vibrations of bars of uniform cross-section. Philos. Mag. 43(253), 125–131 (1922)

    Google Scholar 

  9. R. Frisch-Fay, Flexible Bars (Butterworths, Washington, D.C., 1962)

    MATH  Google Scholar 

  10. P.F. Pai, A.H. Nayfeh, A fully nonlinear theory of curved and twisted composite rotor blades accounting for warpings and three-dimensional stress effects. Int. J. Solids Struct. 31(9), 1309–1340 (1994)

    Google Scholar 

  11. P.F. Pai, A.N. Palazotto, Large-deformation analysis of flexible beams. Int. J. Solids Struct. 33(9), 1335–1353 (1996)

    Article  MATH  Google Scholar 

  12. R.A. Laskin, P.W. Likins, R.W. Longman, Dynamical equations of a free-free beam subject to large overall motions. J. Astronaut. Sci. 31(4), 507–527 (1983)

    Google Scholar 

  13. T.R. Kane, R.R. Ryan, A.K. Banerjee, Dynamics of a cantilever beam attached to a moving base. J. Guid. Control Dynam. 10(2), 139–151 (1987)

    Google Scholar 

  14. J.C. Simo, L. Vuquoc, On the dynamics of flexible beams under large overall motions—the plane case.1. J. Appl. Mech. Trans. ASME. 53(4), 849–854 (1986)

    Google Scholar 

  15. J.C. Simo, L. Vuquoc, On the dynamics of flexible beams under large overall motions—the plane case.2. J. Appl. Mech. Trans. ASME, 53(4), 855–863 (1986)

    Google Scholar 

  16. A.A. Shabana, R.Y. Yakoub, Three dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Des. 123(4), 606–613 (2001)

    Google Scholar 

  17. D.E. Stewart, Rigid-body dynamics with friction and impact, Siam Rev. 42(1), 3–39 (2000)

    Google Scholar 

  18. D.E. Stewart, Convolution complementarity problems with application to impact problems. IMA J. Appl. Math. 71(1), 92–119 (2006)

    Google Scholar 

  19. P. Song, P. Kraus, V. Kumar, P. Dupont, Analysis of rigid-body dynamic models for simulation of systems with frictional contacts. J. Appl. Mech.-Trans. ASME 68(1), 118–128 (2001)

    Google Scholar 

  20. S. Adly, D. Goeleven, A stability theory for second-order nonsmooth dynamical systems with application to friction problems. J. Math. Pure. Appl. 83(1), 17–51 (2004)

    Google Scholar 

  21. N. Kikuchi, J.T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods (SIAM, Philadelphia, 1988)

    Book  MATH  Google Scholar 

  22. T. A. Laursen, J.C. Simo, A continuum-based finite-element formulation for the implicit solution of multibody, large-deformation frictional contact problems. Int. J. Numer. Methods Eng. 36(20), 3451–3485 (1993)

    Google Scholar 

  23. R. Kelkar, V.M. Wang, E.L. Flatow, P.M. Newton, G.A. Ateshian, L.U. Bigliani, R.J. Pawluk, C.C. Mow, Glenohumeral mechanics: a study of articular geometry, contact, and kinematics. J. Shoulder Elbow Surg. 10(1), 73–84 (2001)

    Google Scholar 

  24. H. Iwaki, V. Pinskerova, M.A.R. Freeman, Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee. J. Bone Joint Surg. 82B(8), 1189–1195 (2000)

    Google Scholar 

  25. B.D. Yang, C.H. Menq, Characterization of 3d contact kinematics and prediction of resonant response of structures having 3d frictional constraint. J. Sound Vib 217(5), 909–925 (1998)

    Article  Google Scholar 

  26. D.J. Montana, The kinematics of contact and grasp. 7(3), 17–32 (1988)

    Google Scholar 

  27. Joints and corresponding models. Available: http://ovrt.nist.gov/projects/vrml/h-anim/jointInfo.html

  28. R. Huiskes, J. Kremers, A. Delange, H.J. Woltring, G. Selvik, T.J.G. Vanrens, Analytical stereophotogrammetric determination of 3-dimensional knee-joint geometry. 18(8), 559–570 (1985)

    Google Scholar 

  29. N. Nuno, A.M. Ahmed, Three-dimensional morphometry of the femoral condyles. 18(10), 924–932 (2003)

    Google Scholar 

  30. G. Colombo, M. Joerg, R. Schreier, V. Dietz, Treadmill training of paraplegic patients using a robotic orthosis. 37(6), 693–700 (2000)

    Google Scholar 

  31. K. Kiguchi, K. Iwami, M. Yasuda, K. Watanabe, T. Fukuda, An exoskeletal robot for human shoulder joint motion assist. IEEE/ASME Trans. Mechatron. 8(1), 125–135 (2003)

    Article  Google Scholar 

  32. H. Kawamoto, Y. Sankai, Power assist method based on phase sequence and muscle force condition for hal. Adv. Rob. 19(7), 717–734 (2005)

    Article  Google Scholar 

  33. D.P. Ferris, J.M. Czerniecki, B. Hannaford, An ankle-foot orthosis powered by artificial pneumatic muscles. J. Appl. Biomech. 21(2), 189–197 (2005)

    Article  Google Scholar 

  34. A.B. Zoss, H. Kazerooni, A. Chu, Biomechanical design of the berkeley lower extremity exoskeleton (bleex). IEEE-ASME Trans. Mechatron. 11(2), 128–138 (2006)

    Article  Google Scholar 

  35. K.E. Gordon, D.P. Ferris, Learning to walk with a robotic ankle exoskeleton. J. Biomech. 40(12), 2636–2644 (2007)

    Article  Google Scholar 

  36. N.G. Tsagarakis, D.G. Caldwell, Development and control of a ‘soft-actuated’ exoskeleton for use in physiotherapy and training. Autom. Rob. 15(1), 21–33 (2003)

    Google Scholar 

  37. J.F. Veneman, R. Ekkelenkamp, R. Kruidhof, F.C.T. van der Helm, H. van der Kooij, A series elastic- and bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots. Int. J. Rob. Res. 25(3), 261–281 (2006)

    Article  Google Scholar 

  38. K. Low, Initial experiments on a leg mechanism with a flexible geared joint and footpad. Adv. Rob. 19(4), 373–399 (2005)

    Article  Google Scholar 

  39. M.G. Pandy, Computer modeling and simulation of human movement. Annu. Rev. Biomed. Eng. 3(1), 245–273 (2001)

    Article  Google Scholar 

  40. A. Bull, A. Amis, Knee joint motion: description and measurement. Proc. Inst. Mech. Eng., Part H: J. Eng. Med. 212(5), 357-372 (1998)

    Google Scholar 

  41. M. Lafortune, C. Lambert, M. Lake, Skin marker displacement at the knee joint. J. Biomech. 26(3), 299 (1993)

    Google Scholar 

  42. T.-W. Lu, J. O’connor, Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. J. Biomech. 32(2), 129–134 (1999)

    Article  Google Scholar 

  43. C. Peterfy, J. Li, S. Zaim, J. Duryea, J. Lynch, Y. Miaux, W. Yu, H. Genant, Comparison of fixed-flexion positioning with fluoroscopic semi-flexed positioning for quantifying radiographic joint-space width in the knee: test-retest reproducibility. Skeletal Radiol. 32(3), 128–132 (2003)

    Article  Google Scholar 

  44. G. Li, S.K. Van de Velde, J.T. Bingham, Validation of a non-invasive fluoroscopic imaging technique for the measurement of dynamic knee joint motion. J. Biomech. 41(7), 1616–1622 (2008)

    Article  Google Scholar 

  45. S. Sathasivam, P.S. Walker, A computer model with surface friction for the prediction of total knee kinematics. J. Biomech. 30(2), 177–184 (1997)

    Article  Google Scholar 

  46. T.L.H. Donahue, M. Hull, M.M. Rashid, C.R. Jacobs, A finite element model of the human knee joint for the study of tibio-femoral contact. J. Biomech. Eng. 124(3), 273–280 (2002)

    Article  Google Scholar 

  47. P.C. Liacouras, J.S. Wayne, Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies. J. Biomech. Eng. 129(6), 811–817 (2007)

    Article  Google Scholar 

  48. H.B. Keller, Numerical Methods for Two-Point Boundary-Value Problems. (Waltham, Massachusetts, Blaisdell, 1968)

    Google Scholar 

  49. J. Stoer, R. Bulirsch, Introduction to Numerical Analysis (Springer-Verlag, New York, 1993)

    Book  MATH  Google Scholar 

  50. R. Holsapple, R. Venkataraman, D. Doman, A modified simple shooting method for solving two-point boundary-value problems. in IEEE Proceedings of Aerospace Conference, vol. 6 (2003), pp. 2783-2790

    Google Scholar 

  51. C.-C. Lan, K.-M. Lee, Generalized shooting method for analyzing compliant mechanisms with curved members. J. Mech. Des. 128(4), 765–775 (2006)

    Article  Google Scholar 

  52. C.S. Liu, The lie-group shooting method for nonlinear two-point boundary value problems exhibiting multiple solutions. CMES-Comp. Model. Eng. Sci. 13(2), 149–163 (2006)

    Google Scholar 

  53. C.M. Wang, S. Kitipornchai, Shooting optimization technique for large deflection analysis of structural members. Eng. Struct. 14(4), 231–240 (1992)

    Google Scholar 

  54. S.R. Li, Y.H. Zhou, Shooting method for non-linear vibration and thermal buckling of heated orthotropic circular plates. J. Sound Vib. 248(2), 379–386 (2001)

    Google Scholar 

  55. X. Yin, K.-M. Lee, C.-C. Lan, Computational models for predicting the deflected shape of a non-uniform, flexible finger. in Proceedings of IEEE International Conference on Robotics and Automation (ICRA), vol. 3 (2004), pp. 2963–2968

    Google Scholar 

  56. C.-C. Lan, K.-M. Lee, J.-H. Liou, Dynamics of highly elastic mechanisms using the generalized multiple shooting method: simulations and experiments. Mech. Mach. Theory, 44(12), 2164–2178 (2009)

    Google Scholar 

  57. J. R. Chang, C.S. Liu,C.W. Chang, A new shooting method for quasi-boundary regularization of backward heat conduction problems. Int. J. Heat Mass Transf. 50(11–12), 2325–2332 (2007)

    Google Scholar 

  58. C.S. Liu, Identifying time-dependent damping and stiffness functions by a simple and yet accurate method. J. Sound Vib. 318(1–2), 148–165 (2008)

    Google Scholar 

  59. J.P. Lynch, K.J. Loh, A summary review of wireless sensors and sensor networks for structural health monitoring. Shock Vib. Dig. 38, 91–128 (2006)

    Google Scholar 

  60. I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, A survey on sensor networks. IEEE Commun. Mag. 40(8), 102–114 (2002)

    Google Scholar 

  61. K.-M. Lee, Y. Wang, D. Zhu, J. Guo, X. Yi, Flexure-based mechatronic mobile sensors for structure damage detection, presented at the 7th International Workshop on Structural Health Monitoring (Stanford CA, USA, 2009)

    Google Scholar 

  62. J. Guo, K.-M. Lee, D. Zhu, Y. Wang, A flexonic magnetic car for ferro-structural health monitoring, in the Proceedings of the ASME Dynamics Systems and Control Conference (DSCC) (Hollywood, CA, 2009), pp. 481–487

    Google Scholar 

  63. D. Zhu, X. Yi, Y. Wang, K.-M. Lee, J. Guo, A mobile sensing system for structural health monitoring: design and validation. Smart Mater. Struct.​ 19(5), 055011 (2010)

    Google Scholar 

  64. P.G. Backes, Y. Bar-Cohen, B. Joffe, The multifunction automated crawling system (MACS), in Proceedings of IEEE International Conference on Robotics and Automation, vol. 1 (1997), pp. 335–340

    Google Scholar 

  65. J.Z. Shang, T. Sattar, S. Chen, B. Bridge, Design of a climbing robot for inspecting aircraft wings and fuselage. Int. J. Ind. Rob. 34(6), 495–502 (2007)

    Article  Google Scholar 

  66. J.Z. Xiao, W. Morris, N. Chakravarthy, A. Calle, City-climber: a new generation of mobile robot with wall-climbing capability, in Proceedings of SPIE​ Unmanned systems technology VIII, PTS 1 and 2. vol. 6230, ed. (SPIE-Int Soc Optical Engineering, Bellingham, 2006)

    Google Scholar 

  67. Y. Ota, K. Yoneda, T. Tamaki, S. Hirose, A walking and wheeled hybrid locomotion with twin-frame structure robot, presented at ​IEEE/RSJ International Conference on Intelligent Robots and Systems (2002)

    Google Scholar 

  68. B. Esser, J. Miller, D. Huston, P. Bourn, Robotic systems for homeland security, in Proceedings of SPIE Nondestructive Detection and Measurement for Homeland Security II, vol. 5395 (San Diego, CA, 2004), pp. 134–142

    Google Scholar 

  69. T. Yukawa, M. Suzuki, Y. Satoh, H. Okano, Design of magnetic wheels in pipe inspection robot, presented at  IEEE International Conference on  Systems, Man and Cybernetics (SMC) (2006)

    Google Scholar 

  70. F. Tache, W. Fischer, G. Caprari, R. Siegwart, R. Moser, F. Mondada, Magnebike: a magnetic wheeled robot with high mobility for inspecting complex-shaped structures. J. Field Rob. 26(5), 453–476 (2009)

    Article  Google Scholar 

  71. S.C. Han, J. Kim, H.C. Yi, A novel design of permanent magnet wheel with induction pin for mobile robot. Int. J. Precision Eng. Manuf. 10(4), 143–146 (2009)

    Article  Google Scholar 

  72. H. Yaguchi, N. Sato, Globular magnetic actuator capable of free movement in a complex pipe. IEEE Trans. Magn. 46(6), 1350–1355 (2010)

    Article  Google Scholar 

  73. H. Wei, Y. Chen, J. Tan, T. Wang, Sambot: a self-assembly modular robot system. IEEE/ASME Trans. Mechatron. 16(4), 745–757 (2011)

    Article  Google Scholar 

  74. S. Liu, D. Sun, C. Zhu, Coordinated motion planning for multiple mobile robots along designed paths with formation requirement. IEEE/ASME Trans. Mechatron. 16(6), 1021–1031 (2011)

    Article  Google Scholar 

  75. H. Mehrjerdi, M. Saad, J. Ghommam, Hierarchical fuzzy cooperative control and path following for a team of mobile robots. IEEE/ASME Trans. Mechatron. 16(5), 907–917 (2011)

    Article  Google Scholar 

  76. S. Ahmad, Control of cooperative multiple flexible joint robots. IEEE Trans. Syst., Man, Cybern.​ 23(3), 833–839 (1993)

    Google Scholar 

  77. M.A. Arteaga, B. Siciliano, On tracking control of flexible robot arms. IEEE Trans. Autom. Control 45(3), 520–527 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  78. M. Filipovic, M. Vukobratovic, Modeling of flexible robotic systems, presented at International Conference on Computer as a Tool (EUROCON), vol. 2 (2005)​, pp. 1196–1199

    Google Scholar 

  79. J.G. Garcia, A. Robertsson, J.G. Ortega, R. Johansson, Sensor fusion for compliant robot motion control. IEEE Trans. Rob. 24(2), 430–441 (2008)

    Article  Google Scholar 

  80. J. Guo, K.-M. Lee, D. Zhu, X. Yi, Y. Wang, Large-deformation analysis and experimental validation of a flexure-based mobile sensor node. IEEE-ASME Trans. Mechatron. 17(4), 606–616 (2012)

    Article  Google Scholar 

  81. C.-C. Lan, C.-M. Lin, C.-H. Fan, A self-sensing microgripper module with wide handling ranges. IEEE/ASME Trans. Mechatron. 16(1), 141–150 (2011)

    Article  Google Scholar 

  82. M. Filipovic, M. Vukobratovic, Expansion of source equation of elastic line. Robotica 26(6), 739–751 (2008)

    Article  Google Scholar 

  83. U.-X. Tan, W.T. Latt, C.Y. Shee, W.T. Ang, A low-cost flexure-based handheld mechanism for micromanipulation. IEEE/ASME Trans. Mechatron. 16(4), 773–778 (2011)

    Article  Google Scholar 

  84. H. Xie, S. Régnier, Development of a flexible robotic system for multiscale applications of micro/nanoscale manipulation and assembly. IEEE/ASME Trans. Mechatron. 16(2), 266 (2011)

    Article  Google Scholar 

  85. S.K. Dwivedy, P. Eberhard, Dynamic analysis of flexible manipulators, a literature review. Mech. Mach. Theory 41(7), 749–777 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  86. G.J. Tuijthof, J.L. Herder, Design, actuation and control of an anthropomorphic robot arm. Mech. Mach. Theory 35(7), 945–962 (2000)

    Article  MATH  Google Scholar 

  87. L. Gaudiller, F. Matichard, A nonlinear method for improving the active control efficiency of smart structures subjected to rigid body motions. IEEE/ASME Trans. Mechatron. 12(5), 542–548 (2007)

    Article  Google Scholar 

  88. C. La-orpacharapan, L.Y. Pao, Fast and robust control of systems with multiple flexible modes. IEEE/ASME Trans. Mechatron. 10(5), 521–534 (2005)

    Article  Google Scholar 

  89. R. Caracciolo, A. Trevisani, Simultaneous rigid-body motion and vibration control of a flexible four-bar linkage. Mech. Mach. Theory 36(2), 221–243 (2001)

    Article  MATH  Google Scholar 

  90. A. Trevisani, M.E. Valcher, An energy-based adaptive control design technique for multibody-mechanisms with flexible links. IEEE/ASME Trans. Mechatron. 10(5), 571–580 (2005)

    Article  Google Scholar 

  91. P.F. Pai, A.H. Nayfeh, A fully nonlinear-theory of curved and twisted composite rotor blades accounting for warpings and 3-dimensional stress effects. Int. J. Solids Struct. 31(9), 1309–1340 (1994)

    Article  MATH  Google Scholar 

  92. J. Goodier, Torsional and flexural buckling of bars of thin-walled open section under compressive and bending loads. J. Appl. Mech. ASME. 9(3), 103–107 (1942)

    Google Scholar 

  93. F. Jarrar, M. Hamdan, Nonlinear vibrations and buckling of a flexible rotating beam: A prescribed torque approach. Mech. Mach. Theory 42(8), 919–939 (2007)

    Article  MATH  Google Scholar 

  94. J.L. Batoz, G. Dhatt, Incremental displacement algorithms for nonlinear problems. Int. J. Numer. Methods Eng. 14(8), 1262–1267 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  95. P.K. Jamwal, S.Q. Xie, S. Hussain, J.G. Parsons, An adaptive wearable parallel robot for the treatment of ankle injuries. IEEE/ASME Trans. Mechatron. 19(1), 64–75 (2014)

    Article  Google Scholar 

  96. A. Chiri, N. Vitiello, F. Giovacchini, S. Roccella, F. Vecchi, M.C. Carrozza, Mechatronic design and characterization of the index finger module of a hand exoskeleton for post-stroke rehabilitation. IEEE/ASME Trans. Mechatron. 17(5), 884–894 (2012)

    Article  Google Scholar 

  97. Y. Mao, S.K. Agrawal, Design of a cable-driven arm exoskeleton (CAREX) for neural rehabilitation. IEEE Trans. Rob. 28(4), 922–931 (2012)

    Article  Google Scholar 

  98. S.K. Banala, S.K. Agrawal, S.H. Kim, J.P. Scholz, Novel gait adaptation and neuromotor training results using an active leg exoskeleton. IEEE/ASME Trans. Mechatron. 15(2), 216–225 (2010)

    Article  Google Scholar 

  99. A.M. Dollar, H. Herr, Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art. IEEE Trans. Rob. 24(1), 144–158 (2008)

    Article  Google Scholar 

  100. J. O’connor, T. Shercliff, E. Biden, J. Goodfellow, The geometry of the knee in the sagittal plane. Proc. Inst. Mech. Eng. H, 203(4), 223–233 (1989)

    Google Scholar 

  101. J. Wismans, F. Veldpaus, J. Janssen, A. Huson, P. Struben, A three-dimensional mathematical model of the knee-joint. J. Biomech. 13(8), 681–685 (1980)

    Article  Google Scholar 

  102. G. Wu, P.R. Cavanagh, Isb recommendations for standardization in the reporting of kinematic data. J. Biomech. 28(10), 1257–1261 (1995)

    Article  Google Scholar 

  103. A.H. Stienen, E.E. Hekman, F.C. Van Der Helm, H. Van Der Kooij, Self-aligning exoskeleton axes through decoupling of joint rotations and translations. IEEE Trans. Rob. 25(3), 628–633 (2009)

    Article  Google Scholar 

  104. A. Schiele, F.C. Van Der Helm, Kinematic design to improve ergonomics in human machine interaction. IEEE Trans. Neural Syst. Rehabil. Eng. 14(4), 456–469 (2006)

    Article  Google Scholar 

  105. A. Schiele, An explicit model to predict and interpret constraint force creation in phri with exoskeletons, in Proceedings of IEEE International Conference Robotics Automation (ICRA) (Pasadena, CA, USA, 2008), pp. 1324–1330

    Google Scholar 

  106. A. Schiele, Ergonomics of exoskeletons: Objective performance metrics, in Proceedings of 3rd Joint European Conference Symposium on Haptic Interface for Virtual Environment Teleoperator and System (Salt Lake City, USA, 2009), pp. 103–108

    Google Scholar 

  107. N. Jarrasse, G. Morel, Connecting a human limb to an exoskeleton. IEEE Trans. Rob. 28(3), 697–709 (2012)

    Article  Google Scholar 

  108. L.E. Amigo, A. Casals, J. Amat, Design of a 3-dof joint system with dynamic servo-adaptation in orthotic applications, in Proceedings of IEEE International Conference on Robotics Automation (ICRA) (Shanghai, China, 2011), pp. 3700–3705

    Google Scholar 

  109. D. Cai, P. Bidaud, V. Hayward, F. Gosselin, F. Fontenay Aux Roses, Design of self-adjusting orthoses for rehabilitation, in Proceedings of International Conference on Robotics and Applications vol. 74 (Cambridge, MA, USA, 2009), pp. 215–223

    Google Scholar 

  110. K.-M. Lee, J. Guo, Kinematic and dynamic analysis of an anatomically based knee joint. J. Biomech. 43(7), 1231–1236 (2010)

    Article  Google Scholar 

  111. V.V. Patel, K. Hall, M. Ries, J. Lotz, E. Ozhinsky, C. Lindsey, Y. Lu, S. Majumdar, A three-dimensional mri analysis of knee kinematics. J. Orthop Res. 22(2), 283–292 (2004)

    Article  Google Scholar 

  112. D.-H. Wang, J. Guo, K.-M. Lee, C.-J. Yang, H. Yu, An adaptive knee joint exoskeleton based on biological geometries, in Proceedings of IEEE International Conference on Robotics Automation (Shanghai, China, 2011), pp. 1386–1391

    Google Scholar 

  113. D. Wang, K.-M. Lee, J. Guo, C.-J. Yang, Adaptive knee joint exoskeleton based on biological geometries. IEEE-ASME Trans. Mechatron. 19(4), 1268–1278 (2014)

    Article  Google Scholar 

  114. K. Ma, R. Goetz, S.K. Srivasta, Modeling of residual stress and machining distortion in aerospace components (preprint). Enterp. Soc. 9(3), 513–516 (2010)

    Google Scholar 

  115. E. Diez, H. Perez, J. Marquez, A. Vizan, Feasibility study of in-process compensation of deformations in flexible milling. Int. J. Mach. Tools Manuf. 94, 1–14 (2015)

    Article  Google Scholar 

  116. M.N. Helfrick, C. Niezrecki, P. Avitabile, T. Schmidt, 3d digital image correlation methods for full-field vibration measurement. Mech. Syst. Signal Process. 25(3), 917–927 (2011)

    Article  Google Scholar 

  117. D.J. Cappelleri, G. Piazza, V. Kumar, A two dimensional vision-based force sensor for microrobotic applications. Sens. Actuat. A-Phys. 171(2), 340–351 (2011)

    Article  Google Scholar 

  118. M.Y. Tsai, C.W. Ting, C.Y. Huang, Y.S. Lai, Determination of residual strains of the emc in pbga during manufacturing and ir solder reflow processes. Microelectron. Reliab. 51(3), 642–648 (2011)

    Article  Google Scholar 

  119. I. Hanhan, E. Durnberg, G. Freihofer, P. Akin, S. Raghavan, Portable piezospectroscopy system: non-contact in-situ stress sensing through high resolution photo-luminescent mapping. J. Instrum. 9, P11005 (2014)

    Article  Google Scholar 

  120. Y. Wang, Y. Li, T. Bock, J.P. Lynch, J. Mattila, Introduction to the focused section on intelligent robotics for civil infrastructure. Int. J. Intell. Rob. Appl. 1(3), 239–242 (2017)

    Article  Google Scholar 

  121. B. Li, K. Ushiroda, L. Yang, Q. Song, J. Xiao, Wall-climbing robot for non-destructive evaluation using impact-echo and metric learning svm. Int. J. Intell. Rob. Appl. 1(3), 255–270 (2017)

    Article  Google Scholar 

  122. M. Chierichetti, M. Ruzzene, Dynamic displacement field reconstruction through a limited set of measurements: application to plates. J. Sound Vib. 331(21), 4713–4728 (2012)

    Article  Google Scholar 

  123. R. Izamshah, J.P.T. Mo, S. Ding, Hybrid deflection prediction on machining thin-wall monolithic aerospace components. Proc. Inst. Mech. Eng. Part B-J. Eng. Manuf. 226(B4), 592–605 (2012)

    Google Scholar 

  124. A. Derkevorkian, S.F. Masri, J. Alvarenga, H. Boussalis, J. Bakalyar, W.L. Richards, Strain-based deformation shape-estimation algorithm for control and monitoring applications. AIAA J. 51(9), 2231–2240 (2013)

    Article  Google Scholar 

  125. P. Cerracchio, M. Gherlone, A. Tessler, Real-time displacement monitoring of a composite stiffened panel subjected to mechanical and thermal loads. Meccanica 50(10), 2487–2496 (2015)

    Article  Google Scholar 

  126. A. Tessler, J.L. Spangler, A least-squares variational method for full-field reconstruction of elastic deformations in shear-deformable plates and shells. Comput. Methods Appl Mech. Eng. 194(2), 327–339 (2005)

    Article  MATH  Google Scholar 

  127. R. Glaser, V. Caccese, M. Shahinpoor, Shape monitoring of a beam structure from measured strain or curvature. Exp. Mech. 52(6), 591–606 (2012)

    Article  Google Scholar 

  128. L.U. Odhner, A.M. Dollar, The smooth curvature model: An efficient representation of euler-bernoulli flexures as robot joints. IEEE Trans. Rob. 28(4), 761–772 (2012)

    Article  Google Scholar 

  129. R.J. Roesthuis, M. Kemp, J.J. van den Dobbelsteen, S. Misra, Three-dimensional needle shape reconstruction using an array of fiber bragg grating sensors. IEEE-ASME Trans. Mechatron. 19(4), 1115–1126 (2014)

    Article  Google Scholar 

  130. S. Laflamme, H.S. Saleem, B.K. Vasan, R.L. Geiger, D. Chen, M.R. Kessler, K. Rajan, Soft elastomeric capacitor network for strain sensing over large surfaces. IEEE-ASME Trans. Mechatron. 18(6), 1647–1654 (2013)

    Article  Google Scholar 

  131. J.-W. Park, S.-H. Sim, H.-J. Jung, Displacement estimation using multimetric data fusion. IEEE-ASME Trans. Mechatron. 18(6), 1675–1682 (2013)

    Article  Google Scholar 

  132. J. Baqersad, C. Niezrecki, P. Avitabile, Extracting full-field dynamic strain on a wind turbine rotor subjected to arbitrary excitations using 3d point tracking and a modal expansion technique. J. Sound Vib. 352, 16–29 (2015)

    Article  Google Scholar 

  133. P. Cerracchio, M. Gherlone, M. Di Sciuva, A. Tessler, A novel approach for displacement and stress monitoring of sandwich structures based on the inverse finite element method. Compos. Struct. 127, 69–76 (2015)

    Article  Google Scholar 

  134. Y. Zhao, Y. Zhao, C. Wang, S. Liang, R. Cheng, Y. Qin, P. Wang, Y. Li, X. Li, T. Hu, Design and development of a cutting force sensor based on semi-conductive strain gauge. Sens. Actuat. A-Phys. 237, 119–127 (2016)

    Article  Google Scholar 

  135. J. Guo, K. Lee, W. Liu, B. Wang, Design criteria based on modal analysis for vibration sensing of thin-wall plate machining. IEEE-ASME Trans. Mechatron. 20(3), 1406–1417 (2015)

    Article  Google Scholar 

  136. A.A.D. Sarhan, A. Matsubara, Investigation about the characterization of machine tool spindle stiffness for intelligent cnc end milling. Rob. Comput. Integr. Manuf. 34, 133–139 (2015)

    Article  Google Scholar 

  137. J.S. Bae, M.K. Kwak, D.J. Inman, Vibration suppression of a cantilever beam using eddy current damper. J. Sound Vib. 284(3–5), 805–824 (2005)

    Article  Google Scholar 

  138. J. Laborenz, M. Krack, L. Panning, J. Wallaschek, M. Denk, P.-A. Masserey, Eddy current damper for turbine blading: electromagnetic finite element analysis and measurement results. J. Eng. Gas Turbines Power 134(4), 2012

    Google Scholar 

  139. J. Guo, R. Liu, K.-M. Lee, Displacement field sensing and reconstruction for vibration of a thin-wall plate, in Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) (Busan, Korea, 2015), pp. 1350–1355

    Google Scholar 

  140. J. Guo, R. Liu, K.-M. Lee, Dynamic modeling and analysis for thin-wall plate machining, in Proceedings of the ASME Dynamic Systems and Control Conference, vol. 3 (Columbus, Ohio, USA, 2015)

    Google Scholar 

  141. W. Daley, T. He, K.-M. Lee, M. Sandlin, Modeling of the natural product deboning process using biological (1999), pp. 49–54

    Google Scholar 

  142. M.C. Sandlin, Model-Based Vision-Guided Automated Cutting of Natural Products (Master, Mechanical Engineering, Georgia Institute of Technology, Atlanta, 1998)

    Google Scholar 

  143. T. He, Effects of Rotor Configurations on the Characteristic Torque of a Variable-Reluctance Spherical Motor (Ph.D., Mechanical Engineering, Georgia Institute of Technology, Atlanta, 2000)

    Google Scholar 

  144. K.-M. Lee, C.-K. Kwan, Design concept development of a spherical stepper for robotic. 7(1), 175–181 (1991)

    Google Scholar 

  145. M.R. Claffee, The Effects of Wing Manipulation on Automated Cutting of Biological Materials (Master, Mechanical Engineering, Georgia Institute of Technology, Atlanta, 2006)

    Google Scholar 

  146. K.-M. Lee, On the development of a compliant grasping mechanism for online handling of live objects. I. Analytical model, in Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) (1999), pp. 354–359

    Google Scholar 

  147. K.-M. Lee, A.B. Webster, J. Joni, X. Yin, R. Carey, M.P. Lacy, R. Gogate, On the development of a compliant grasping mechanism for online handling of live objects. II. Design and experimental investigation, in Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), (1999), pp. 360–365

    Google Scholar 

  148. Q. Li, K.-M. Lee, An adaptive meshless method for analyzing large mechanical deformation and contacts. J. Appl. Mech. Trans. ASME. 75(4), 041014 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiajie Guo .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Huazhong University of Science and Technology Press, Wuhan and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guo, J., Lee, KM. (2019). Introduction. In: Flexonics for Manufacturing and Robotics. Research on Intelligent Manufacturing. Springer, Singapore. https://doi.org/10.1007/978-981-13-2667-7_1

Download citation

Publish with us

Policies and ethics