Sick Building Syndrome and Other Building-Related Illnesses

  • Pranab Kumar Nag
Part of the Design Science and Innovation book series (DSI)


Sick building syndrome (SBS) and building-related illnesses are omnipresent in modern high-rise buildings. The SBS is a complex spectrum of ill health symptoms, such as mucous membrane irritation, asthma, neurotoxic effects, gastrointestinal disturbance, skin dryness, sensitivity to odours that may appear among occupants in office and public buildings, schools and hospitals. Studies on large office buildings from USA, UK, Sweden, Finland, Japan, Germany, Canada, China, India, Netherlands, Malaysia, Taiwan, and Thailand, substantiate the occurrence of SBS phenomena. The accumulated effects of a multitude of factors, such as the indoor environmental quality, building characteristics, building dampness, and activities of occupants attribute to SBS. A building occupant manifests at least one symptom of SBS, the onset of two or more symptoms at least twice, and rapid resolution of symptoms following moving away from the workstation or building may be defined as having SBS. Based on the peer-reviewed documentation, this chapter elaborates the magnitude of building-related health consequences due to measurable environmental causations, and the size of the population affected. The mechanisms and causative factors of SBS and illnesses include, for example, the oxidative stress resulting from indoor pollutants, VOCs, office work-related stressors, humidification, odours associated with moisture and bioaerosol exposure. Related regulatory standards and strategies for management of SBS and other illnesses are elaborated.


  1. Apte, M. G., & Daisey, J. M. (1999). VOCs and “sick building syndrome”: Application of a new statistical approach for SBS research to US EPA BASE study data. In Proceedings of Indoor Air, 99. The 8th International Conference on Indoor Air Quality and Climate, 8–13 August 1999, Edinburgh, Scotland (Vol. 1, pp. 117–122).Google Scholar
  2. Apte, M. G., & Erdmann, C. A. (2003). Indoor carbon dioxide concentrations, VOCs, environmental sensitivity associations with mucous membrane and lower respiratory sick building syndrome symptoms in the BASE study: Analyses of the 100 building dataset. Lawrence Berkeley National Laboratory, p 23, 2002.
  3. Apte, M. G., Fisk, W. J., & Daisey, J. M. (2000). Associations between indoor CO2 concentrations and sick building syndrome symptoms in US office buildings: An analysis of the 1994–1996 BASE study data. Indoor Air, 10(4), 246–257.CrossRefGoogle Scholar
  4. Araki, A., Kawai, T., Eitaki, Y., Kanazawa, A., Morimoto, K., Nakayama, K., et al. (2010). Relationship between selected indoor volatile organic compounds, so-called microbial VOC, and the prevalence of mucous membrane symptoms in single family homes. Science of the Total Environment, 408(10), 2208–2215.CrossRefGoogle Scholar
  5. Aries, M. B., Veitch, J. A., & Newsham, G. R. (2010). Windows, view, and office characteristics predict physical and psychological discomfort. Journal of Environmental Psychology, 30(4), 533–541.CrossRefGoogle Scholar
  6. Asadi, E., Costa, J. J., & da Silva, M. G. (2011). Indoor air quality audit implementation in a hotel building in Portugal. Building and Environment, 46(8), 1617–1623.CrossRefGoogle Scholar
  7. Asan, A., Okten, S. S., & Sen, B. (2010). Airborne and soilborne microfungi in the vicinity Hamitabat Thermic Power Plant in Kirklareli City (Turkey), their seasonal distributions and relations with climatological factors. Environmental Monitoring and Assessment, 164(1–4), 221–231.CrossRefGoogle Scholar
  8. Aubert, A., & Solliec, C. (2011). Push-pull air curtain performances for VOCs containment in an industrial process. Journal of Applied Fluid Mechanics, 4, 43–50.Google Scholar
  9. Aydogdu, H., Asan, A., & Otkun, M. T. (2010). Indoor and outdoor airborne bacteria in child day-care centers in Edirne City (Turkey), seasonal distribution and influence of meteorological factors. Environmental Monitoring and Assessment, 164(1–4), 53–66.CrossRefGoogle Scholar
  10. Balm, M. N., Jureen, R., Teo, C., Yeoh, A. E., Lin, R. T. P., Dancer, S. J., et al. (2012). Hot and steamy: Outbreak of Bacillus cereus in Singapore associated with construction work and laundry practices. Journal of Hospital Infection, 81(4), 224–230.CrossRefGoogle Scholar
  11. Bartholomew, R. E., & Wessely, S. (2002). Protean nature of mass sociogenic illness. The British Journal of Psychiatry, 180(4), 300–306.CrossRefGoogle Scholar
  12. Bartley, J. M., Olmsted, R. N., & Haas, J. (2010). Current views of health care design and construction: Practical implications for safer, cleaner environments. American Journal of Infection Control, 38(5), S1–S12.CrossRefGoogle Scholar
  13. Baubiologie Maes. (2008). Institut fur Baubiologie + Okologie IBN. In Building Biology Evaluation Guidelines for Sleeping Areas SBM-2008.
  14. Bazaka, K., Jacob, M. V., Crawford, R. J., & Ivanova, E. P. (2011). Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment. Acta Biomaterialia, 7(5), 2015–2028.CrossRefGoogle Scholar
  15. Beezhold, D. H., Green, B. J., Blachere, F. M., Schmechel, D., Weissman, D. N., Velickoff, D., et al. (2008). Prevalence of allergic sensitization to indoor fungi in West Virginia. Allergy and Asthma Proceeding, 29(1), 29–34. OceanSide Publications, Inc.Google Scholar
  16. Beggs, C. B., Noakes, C. J., Sleigh, P. A., Fletcher, L. A., & Siddiqi, K. (2003). The transmission of tuberculosis in confined spaces: An analytical review of alternative epidemiological models. The International Journal of Tuberculosis and Lung Disease, 7(11), 1015–1026.Google Scholar
  17. Bell, I. R., Baldwin, C. M., & Schwartz, G. E. (1998). Illness from low levels of environmental chemicals: Relevance to chronic fatigue syndrome and fibromyalgia. The American Journal of Medicine, 105(3), 74S–82S.CrossRefGoogle Scholar
  18. Best, E. L., Sandoe, J. A. T., & Wilcox, M. H. (2012). Potential for aerosolization of Clostridium difficile after flushing toilets: The role of toilet lids in reducing environmental contamination risk. Journal of Hospital Infection, 80(1), 1–5.CrossRefGoogle Scholar
  19. Bloom, E., Bal, K., Nyman, E., Must, A., & Larsson, L. (2007). Mass spectrometry-based strategy for direct detection and quantification of some mycotoxins produced by Stachybotrys and Aspergillus spp. in indoor environments. Applied and Environmental Microbiology, 73(13), 4211–4217.CrossRefGoogle Scholar
  20. Bone, A., Murray, V., Myers, I., Dengel, A., & Crump, D. (2010). Will drivers for home energy efficiency harm occupant health? Perspectives in Public Health, 130(5), 233–238.CrossRefGoogle Scholar
  21. Bornehag, C. G., Blomquist, G., Gyntelberg, F., Jarvholm, B., Malmberg, P., Nordvall, L., et al. (2001). Dampness in buildings and health. Indoor Air, 11(2), 72–86.CrossRefGoogle Scholar
  22. Brasche, S., Bullinger, M., Morfeld, M., Gebhardt, H. J., & Bischof, W. (2001). Why do women suffer from sick building syndrome more often than men?–Subjective higher sensitivity versus objective causes. Indoor Air, 11(4), 217–222.CrossRefGoogle Scholar
  23. Breda, L., Nozzi, M., De Sanctis, S., & Chiarelli, F. (2010). Laboratory tests in the diagnosis and follow-up of pediatric rheumatic diseases: An update. Seminars in Arthritis and Rheumatism, 40(1), 53–72. WB Saunders.Google Scholar
  24. Brinke, J. T., Selvin, S., Hodgson, A. T., Fisk, W. J., Mendell, M. J., Koshland, C. P., et al. (1998). Development of new volatile organic compound (VOC) exposure metrics and their relationship to “sick building syndrome” symptoms. Indoor Air, 8(3), 140–152.CrossRefGoogle Scholar
  25. Britton, L. A. (2003). Microbiological threats to health in the home. Clinical Lab Science, 16, 10–15.Google Scholar
  26. Burge H. (2006). How does heat affect fungi. The Environmental Reporter, 4(3).Google Scholar
  27. Burge, S., Hedge, A., Wilson, S., Bass, J. H., & Robertson, A. (1987). Sick building syndrome: A study of 4373 office workers. The Annals of Occupational Hygiene, 31(4A), 493–504.Google Scholar
  28. Burton, N. C., Adhikari, A., Iossifova, Y., Grinshpun, S. A., & Reponen, T. (2008). Effect of gaseous chlorine dioxide on indoor microbial contaminants. Journal of the Air Waste Management Association, 58, 647–656.CrossRefGoogle Scholar
  29. Cabral, J. P. S. (2010). Can we use indoor fungi as bioindicators of indoor air quality? Historical perspectives and open questions. Science of the Total Environment, 408, 4285–4295.CrossRefGoogle Scholar
  30. Calderón-Garcidueñas, L., Wen-Wang, L., Zhang, Y. J., Rodriguez-Alcaraz, A., Osnaya, N., Villarreal-Calderón, A., et al. (1999). 8-hydroxy-2’-deoxyguanosine, a major mutagenic oxidative DNA lesion, and DNA strand breaks in nasal respiratory epithelium of children exposed to urban pollution. Environmental Health Perspectives, 107(6), 469.Google Scholar
  31. Carp, O., Huisman, C. L., & Reller, A. (2004). Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32(1), 33–177.CrossRefGoogle Scholar
  32. Castro, R., Angus, D. C., & Rosengart, M. R. (2011). The effect of light on critical illness. Critical Care, 15(2), 218.CrossRefGoogle Scholar
  33. Cena, K., & de Dear, R. J. (1999). Field study of occupant comfort and office thermal environments in a hot, arid climate. ASHRAE Transactions, 105, 204.Google Scholar
  34. Chan, M. T., Leung, D. Y., Szefler, S. J., & Spahn, J. D. (1998). Difficult-to-control asthma: Clinical characteristics of steroid-insensitive asthma. Journal of Allergy and Clinical Immunology, 101(5), 594–601.CrossRefGoogle Scholar
  35. Chatkin, J. M., Ansarin, K., Silkoff, P. E., McCLEAN, P., Gutierrez, C., Zamel, N., et al. (1999). Exhaled nitric oxide as a noninvasive assessment of chronic cough. American Journal of Respiratory and Critical Care Medicine, 159(6), 1810–1813.CrossRefGoogle Scholar
  36. Chen, C., & Zhao, B. (2010). Some questions on dispersion of human exhaled droplets in ventilation room: Answers from numerical investigation. Indoor Air, 20(2), 95–111.CrossRefGoogle Scholar
  37. Chester, A. C., & Levine, P. H. (1997). The natural history of concurrent sick building syndrome and chronic fatigue syndrome. Journal of Psychiatric Research, 31(1), 51–57.CrossRefGoogle Scholar
  38. Choi, J., Aziz, A., & Loftness, V. (2010). Investigation on the impacts of different genders and ages on satisfaction with thermal environments in office buildings. Building and Environment, 45(6), 1529–1535.CrossRefGoogle Scholar
  39. Clark, R. P., & de Calcina-Goff, M. L. (2009). Some aspects of the airborne transmission of infection. Journal of the Royal Society, Interface, 6(Suppl 6), S767–S782.Google Scholar
  40. Clement, J., Maes, P., Ducoffre, G., Van Loock, F., & Van Ranst, M. (2008). Hantaviruses: Underestimated respiratory viruses? Clinical Infectious Diseases, 46(3), 477–479.CrossRefGoogle Scholar
  41. Coelho, C., Steers, M., Lutzler, P., & Schriver-Mazzuoli, L. (2005). Indoor air pollution in old people’s homes related to some health problems: A survey study. Indoor Air, 15(4), 267–274.CrossRefGoogle Scholar
  42. Cometto-Muniz, J. E., & Cain, W. S. (1996). Physicochemical determinants and functional properties of the senses of irritation and smell. Indoor Air and Human Health, 2, 53–65.Google Scholar
  43. Craig, R., & Mindell, J. (2011). Health survey for England 2010. Respiratory health. London: NHS Information Centre.Google Scholar
  44. Cunha, B. A. (2008). Atypical pneumonias: current clinical concepts focusing on Legionnaires’ disease. Current Opinion in Pulmonary Medicine, 14(3), 183–194.CrossRefGoogle Scholar
  45. Di Giulio, M., Grande, R., Di Campli, E., Di Bartolomeo, S., & Cellini, L. (2010). Indoor air quality in university environments. Environmental Monitoring and Assessment, 170(1), 509–517.CrossRefGoogle Scholar
  46. Doherty, W. O., Mousavioun, P., & Fellows, C. M. (2011). Value-adding to cellulosic ethanol: Lignin polymers. Industrial Crops and Products, 33(2), 259–276.CrossRefGoogle Scholar
  47. Donnini, G., Nguyen, V. H., Lai, D. H. C., LaFlamme, M., Haghighat, F., Molina, J., et al. (1997). Field study of occupant comfort and office thermal environments in a cold climate (No. CONF-970668–). ASHRAE Transactions, 103, 205–220.Google Scholar
  48. Drappatz, J., Schiff, D., Kesari, S., Norden, A. D., & Wen, P. Y. (2007). Medical management of brain tumor patients. Neurologic Clinics, 25(4), 1035–1071.CrossRefGoogle Scholar
  49. Eames, I., Shoaib, D., Klettner, C. A., & Taban, V. (2009). Movement of airborne contaminants in a hospital isolation room. Journal of the Royal Society, Interface, 6(Suppl 6), S757–S766.Google Scholar
  50. Eder, W., Ege, M. J., & von Mutius, E. (2006). The asthma epidemic. New England Journal of Medicine, 355(21), 2226–2235.CrossRefGoogle Scholar
  51. Eduard, W. (2009). Fungal spores: A critical review of the toxicological and epidemiological evidence as a basis for occupational exposure limit setting. Critical Reviews in Toxicology, 39(10), 799–864.CrossRefGoogle Scholar
  52. Engelhart, S., Loock, A., Skutlarek, D., Sagunski, H., Lommel, A., Färber, H., et al. (2002). Occurrence of toxigenic Aspergillus versicolor isolates and sterigmatocystin in carpet dust from damp indoor environments. Applied and Environmental Microbiology, 68(8), 3886–3890.CrossRefGoogle Scholar
  53. Engvall, K., Norrby, C., & Norbäck, D. (2001). Sick building syndrome in relation to building dampness in multi-family residential buildings in Stockholm. International Archives of Occupational and Environmental Health, 74(4), 270–278.CrossRefGoogle Scholar
  54. Erdmann, C. A., & Apte, M. G. (2004). Mucous membrane and lower respiratory building related symptoms in relation to indoor carbon dioxide concentrations in the 100-building BASE dataset. Indoor Air, 14(s8), 127–134.CrossRefGoogle Scholar
  55. Erkara, I. P., Asan, A., Yilmaz, V., Pehlivan, S., & Okten, S. S. (2008). Airborne Alternaria and Cladosporium species and relationship with meteorological conditions in Eskisehir City, Turkey. Environmental Monitoring and Assessment, 144(1), 31–41.CrossRefGoogle Scholar
  56. Everaert, K., & Baeyens, J. (2004). Catalytic combustion of volatile organic compounds. Journal of Hazardous Materials, 109(1), 113–139.CrossRefGoogle Scholar
  57. Fanger, P. O. (1988). Introduction of the olf and the decipol units to quantify air pollution perceived by humans indoors and outdoors. Energy and Buildings, 12(1), 1–6.CrossRefGoogle Scholar
  58. Fehr, R., Hurley, F., Mekel, O. C., & Mackenbach, J. P. (2012). Quantitative health impact assessment: taking stock and moving forward. Journal of Epidemiology and Community Health, 66, 1088–1091.CrossRefGoogle Scholar
  59. Fishwick, D., Barber, C. M., Bradshaw, L. M., Harris-Roberts, J., Francis, M., Naylor, S., et al. (2008). Standards of care for occupational asthma. Thorax, 63(3), 240–250.CrossRefGoogle Scholar
  60. Fisk, W. J. (2000). Health and productivity gains from better indoor environments and their relationship with building energy efficiency. Annual Review of Energy and the Environment, 25(1), 537–566.CrossRefGoogle Scholar
  61. Fisk, W. J., Lei-Gomez, Q., & Mendell, M. J. (2007). Meta-analyses of the associations of respiratory health effects with dampness and mold in homes. Indoor Air, 17(4), 284–296.CrossRefGoogle Scholar
  62. Fisk, W. J., Mirer, A. G., & Mendell, M. J. (2009). Quantitative relationship of sick building syndrome symptoms with ventilation rates. Indoor Air, 19(2), 159–165.CrossRefGoogle Scholar
  63. Foster, A. M., Swain, M. J., Barrett, R., D’agaro, P., & James, S. J. (2006). Effectiveness and optimum jet velocity for a plane jet air curtain used to restrict cold room infiltration. International Journal of Refrigeration, 29(5), 692–699.CrossRefGoogle Scholar
  64. Fournel, I., Sautour, M., Lafon, I., Sixt, N., L’ollivier, C., Dalle, F., et al. (2010). Airborne Aspergillus contamination during hospital construction works: Efficacy of protective measures. American Journal of Infection Control, 38(3), 189–194.CrossRefGoogle Scholar
  65. Franks, T. J., & Galvin, J. R. (2010). Hypersensitivity pneumonitis: Essential radiologic and pathologic findings. Surgical Pathology Clinics, 3(1), 187–198.CrossRefGoogle Scholar
  66. Fraser, D. W., Tsai, T. R., Orenstein, W., Parkin, W. E., Beecham, H. J., Sharrar, R. G., et al. (1977). Legionnaires’ disease: Description of an epidemic of pneumonia. New England Journal of Medicine, 297(22), 1189–1197.CrossRefGoogle Scholar
  67. Fukuda, K., Straus, S. E., Hickie, I., Sharpe, M. C., Dobbins, J. G., & Komaroff, A. (1994). The chronic fatigue syndrome: A comprehensive approach to its definition and study. Annals of Internal Medicine, 121(12), 953–959.CrossRefGoogle Scholar
  68. Gillespie, N. C., Lewis, R. J., Pearn, J. H., Bourke, A., Holmes, M. J., Bourke, J. B., et al. (1986). Ciguatera in Australia. Occurrence, clinical features, pathophysiology and management. The Medical Journal of Australia, 145(11–12), 584–590.Google Scholar
  69. Gilmour, M. I., Jaakkola, M. S., London, S. J., Nel, A. E., & Rogers, C. A. (2006). How exposure to environmental tobacco smoke, outdoor air pollutants, and increased pollen burdens influences the incidence of asthma. Environmental Health Perspectives, 114(4), 627.CrossRefGoogle Scholar
  70. Godish, T., & Spengler, J. D. (1996). Relationships between ventilation and indoor air quality: A review. Indoor Air, 6(2), 135–145.CrossRefGoogle Scholar
  71. Górny, R. L. (2004). Filamentous microorganisms and their fragments in indoor air–A review. Annals of Agricultural and Environmental Medicine, 11(2), 185–197.Google Scholar
  72. Gottschalk, C., Bauer, J., & Meyer, K. (2006). Determination of macrocyclic trichothecenes in mouldy indoor materials by LC-MS/MS. Mycotoxin Research, 22(3), 189–192.CrossRefGoogle Scholar
  73. Gralton, J., Tovey, E., McLaws, M. L., & Rawlinson, W. D. (2011). The role of particle size in aerosolised pathogen transmission: A review. Journal of Infection, 62(1), 1–13.CrossRefGoogle Scholar
  74. Graudenz, G. S., Oliveira, C. H., Tribess, A., Mendes, C., Latorre, M. R. D. O., & Kalil, J. (2005). Association of air-conditioning with respiratory symptoms in office workers in tropical climate. Indoor Air, 15(1), 62–66.CrossRefGoogle Scholar
  75. Greig, J. D., & Lee, M. B. (2012). A review of nosocomial norovirus outbreaks: Infection control interventions found effective. Epidemiology and Infection, 140(7), 1151–1160.CrossRefGoogle Scholar
  76. Guo, H. (2011). Source apportionment of volatile organic compounds in Hong Kong homes. Building and Environment, 46(11), 2280–2286.CrossRefGoogle Scholar
  77. Gupta, S., Khare, M., & Goyal, R. (2007). Sick building syndrome—A case study in a multistory centrally air-conditioned building in the Delhi City. Building and Environment, 42(8), 2797–2809.CrossRefGoogle Scholar
  78. Haley, R. W., Kurt, T. L., & Hom, J. (1997). Is there a Gulf war syndrome?: Searching for syndromes by factor analysis of symptoms. JAMA, 277(3), 215–222.CrossRefGoogle Scholar
  79. Halios, C. H., & Helmis, C. G. (2010). Temporal evolution of the main processes that control indoor pollution in an office microenvironment: A case study. Environmental Monitoring and Assessment, 167(1), 199–217.CrossRefGoogle Scholar
  80. Hamblin, M. R., Viveiros, J., Yang, C., Ahmadi, A., Ganz, R. A., & Tolkoff, M. J. (2005). Helicobacter pylori accumulates photoactive porphyrins and is killed by visible light. Antimicrobial Agents and Chemotherapy, 49(7), 2822–2827.CrossRefGoogle Scholar
  81. Heinrich, J. (2011). Influence of indoor factors in dwellings on the development of childhood asthma. International Journal of Hygiene and Environmental Health, 214(1), 1–25.CrossRefGoogle Scholar
  82. Hengpraprom, S., Onopparatwibul, V., Chindaporn, A., Sithisarankul, P. (2010). Indoor air quality and allergic rhinitis among office workers in a high-rise building. Journal of Environmental Health Research, 12.Google Scholar
  83. Herfst, S., Schrauwen, E. J., Linster, M., Chutinimitkul, S., de Wit, E., Munster, V. J., et al. (2012). Airborne transmission of influenza A/H5N1 virus between ferrets. Science, 336(6088), 1534–1541.CrossRefGoogle Scholar
  84. Hoang, C. P., Kinney, K. A., Corsi, R. L., & Szaniszlo, P. J. (2010). Resistance of green building materials to fungal growth. International Biodeterioration and Biodegradation, 64(2), 104–113.CrossRefGoogle Scholar
  85. Hobday, R. (2011). Indoor environmental quality in refurbishment. Historic Scotland Technical Paper12. EdinburghGoogle Scholar
  86. Hobday, R. A., & Dancer, S. J. (2013). Roles of sunlight and natural ventilation for controlling infection: historical and current perspectives. Journal of Hospital Infection, 84(4), 271–282.CrossRefGoogle Scholar
  87. Hood, A. M. (2009). The effect of open-air factors on the virulence and viability of airborne Francisella tularensis. Epidemiology and Infection, 137(6), 753–761.CrossRefGoogle Scholar
  88. Horner, W. E., Worthan, A. G., & Morey, P. R. (2004). Air-and dustborne mycoflora in houses free of water damage and fungal growth. Applied and Environmental Microbiology, 70(11), 6394–6400.CrossRefGoogle Scholar
  89. Huttunen, K., Pelkonen, J., Nielsen, K. F., Nuutinen, U., Jussila, J., & Hirvonen, M. R. (2004). Synergistic interaction in simultaneous exposure to Streptomyces californicus and Stachybotrys chartarum. Environmental Health Perspectives, 112(6), 659.CrossRefGoogle Scholar
  90. Jaakkola, J. J., & Jaakkola, M. S. (2002). Effects of environmental tobacco smoke on the respiratory health of children. Scandinavian Journal of Work, Environment & Health, 71–83.Google Scholar
  91. Jaakkola, M. S., & Jaakkola, J. J. (2007). Office work exposures and adult-onset asthma. Environmental Health Perspectives, 115(7), 1007–1011.CrossRefGoogle Scholar
  92. Jaakkola, J. J., & Knight, T. L. (2008). The role of exposure to phthalates from polyvinyl chloride products in the development of asthma and allergies: A systematic review and meta-analysis. Environmental Health Perspectives, 116(7), 845.CrossRefGoogle Scholar
  93. Jaakkola, J. J., & Miettinen, P. (1995). Ventilation rate in office buildings and sick building syndrome. Occupational and Environmental Medicine, 52(11), 709–714.CrossRefGoogle Scholar
  94. Jaakkola, J. J., Piipari, R., & Jaakkola, M. S. (2003). Occupation and asthma: A population-based incident case-control study. American Journal of Epidemiology, 158(10), 981–987.CrossRefGoogle Scholar
  95. Jaakkola, J. J., Ieromnimon, A., & Jaakkola, M. S. (2006). Interior surface materials and asthma in adults: A population-based incident case-control study. American Journal of Epidemiology, 164(8), 742–749.CrossRefGoogle Scholar
  96. Jaakkola, M. S., Yang, L., Ieromnimon, A., & Jaakkola, J. J. (2007). Office work exposures and respiratory and sick building syndrome symptoms. Occupational and Environmental Medicine, 64(3), 178–184.CrossRefGoogle Scholar
  97. Jo, W. K. (2011). Bioaerosols in apartment buildings. Encyclopedia of Environmental Health (pp. 323–330).Google Scholar
  98. Jovanovic, S., Felder-Kennel, A., Gabrio, T., Kouros, B., Link, B., Maisner, V., et al. (2004). Indoor fungi levels in homes of children with and without allergy history. International Journal of Hygiene and Environmental Health, 207(4), 369–378.CrossRefGoogle Scholar
  99. Jung, J. H., Lee, J. E., & Bae, G. N. (2011). Real-time measurement of UV-inactivated Escherichia coli bacterial particles by electrospray-assisted UVAPS spectrometry. Science of the Total Environment, 409(17), 3249–3255.CrossRefGoogle Scholar
  100. Kalyoncu, F. (2010). Relationship between airborne fungal allergens and meteorological factors in Manisa City, Turkey. Environmental Monitoring and Assessment, 165(1–4), 553–558.CrossRefGoogle Scholar
  101. Karjalainen, S. (2007). Gender differences in thermal comfort and use of thermostats in everyday thermal environments. Building and Environment, 42(4), 1594–1603.CrossRefGoogle Scholar
  102. Kawel, N., Schorer, G., Desbiolles, L., Seifert, B., Marincek, B., & Boehm, T. (2011). Discrimination between invasive pulmonary aspergillosis and pulmonary lymphoma using CT. European Journal of Radiology, 77(3), 417–425.CrossRefGoogle Scholar
  103. Kembel, S. W., Jones, E., Kline, J., Northcutt, D., Stenson, J., Womack, A. M., et al. (2012). Architectural design influences the diversity and structure of the built environment microbiome. The ISME Journal, 6(8), 1469–1479.CrossRefGoogle Scholar
  104. Kerr, K. G. (2010). Controlling methicillin-resistant staphylococcus aureus infection in hospitals. European Critical Care & Emergency Medicine2.Google Scholar
  105. Khan, A. H., & Karuppayil, S. M. (2012). Fungal pollution of indoor environments and its management. Saudi Journal of Biological Sciences, 19(4), 405–426.CrossRefGoogle Scholar
  106. Kildesø, J., Würtz, H., Nielsen, K. F., Kruse, P., Wilkins, K., Thrane, U., et al. (2003). Determination of fungal spore release from wet building materials. Indoor Air, 13(2), 148–155.CrossRefGoogle Scholar
  107. Kim, J., de Dear, R., Candido, C., Zhang, H., & Arens, E. (2013). Gender differences in office occupant perception of indoor environmental quality (IEQ). Building and Environment, 70, 245–256.CrossRefGoogle Scholar
  108. Kimmel, M., Braun, N., & Alscher, D. M. (2010). Should we recommend precautions during a hantavirus endemic? NDT Plus, 3(4), 424–426.Google Scholar
  109. Korpi, A., Järnberg, J., & Pasanen, A. L. (2009). Microbial volatile organic compounds. Critical Reviews in Toxicology, 39(2), 139–193.CrossRefGoogle Scholar
  110. Landrigan, P. J. (1997). Illness in Gulf war veterans: causes and consequences. JAMA, 277(3), 259–261.CrossRefGoogle Scholar
  111. Lanier, C., Richard, E., Heutte, N., Picquet, R., Bouchart, V., & Garon, D. (2010). Airborne molds and mycotoxins associated with handling of corn silage and oilseed cakes in agricultural environment. Atmospheric Environment, 44(16), 1980–1986.CrossRefGoogle Scholar
  112. Laumbach, R. J. (2008). Sick building syndrome. Intern Encyclopedia Public Health, 4–8.Google Scholar
  113. Lee, M. G., Li, S., Jarvis, B. B., & Pestka, J. J. (1999). Effects of satratoxins and other macrocyclic trichothecenes on IL-2 production and viability of EL-4 thymoma cells. Journal of Toxicology and Environmental Health, Part A, 57(7), 459–474.CrossRefGoogle Scholar
  114. Li, Y., Leung, G. M., Tang, J. W., Yang, X., Chao, C. Y. H., Lin, J. Z., et al. (2007). Role of ventilation in airborne transmission of infectious agents in the built environment–A multidisciplinary systematic review. Indoor Air, 17(1), 2–18.CrossRefGoogle Scholar
  115. Li, A., Liu, Z., Zhu, X., Liu, Y., & Wang, Q. (2010). The effect of air-conditioning parameters and deposition dust on microbial growth in supply air ducts. Energy and Buildings, 42(4), 449–454.CrossRefGoogle Scholar
  116. Liu, W., Ji, J., Chen, H., & Ye, C. (2014). Optimal color design of psychological counseling room by design of experiments and response surface methodology. PLoS ONE, 9(3), e90646.CrossRefGoogle Scholar
  117. Löwhagen, O., Ellbjär, S., & Jörgensen, N. (1997). Asthma or asthma-like condition? Nordisk Medicin, 112(4), 119–121.Google Scholar
  118. Lu, C. Y., Ma, Y. C., Lin, J. M., Chuang, C. Y., & Sung, F. C. (2007). Oxidative DNA damage estimated by urinary 8-hydroxydeoxyguanosine and indoor air pollution among non-smoking office employees. Environmental Research, 103(3), 331–337.CrossRefGoogle Scholar
  119. Lugauskas, A., & Krikštaponis, A. (2004). Filamentous fungi isolated in hospitals and some medical institutions in Lithuania. Indoor and Built Environment, 13(2), 101–108.CrossRefGoogle Scholar
  120. Lugauskas, A., Levinskaite, L., & Peciulyte, D. (2003). Micromycetes as deterioration agents of polymeric materials. International Biodeterioration Biodegradation, 52(4), 233–242.CrossRefGoogle Scholar
  121. Maclean, M., MacGregor, S. J., Anderson, J. G., Woolsey, G. A., Coia, J. E., Hamilton, K., et al. (2010). Environmental decontamination of a hospital isolation room using high-intensity narrow-spectrum light. Journal of Hospital Infection, 76(3), 247–251.CrossRefGoogle Scholar
  122. Marmot, A. F., Eley, J., Stafford, M., Stansfeld, S. A., Warwick, E., & Marmot, M. G. (2006). Building health: An epidemiological study of “sick building syndrome” in the Whitehall II study. Occupational and Environmental Medicine, 63(4), 283–289.CrossRefGoogle Scholar
  123. Marshall, J. A., & Bruggink, L. D. (2011). The dynamics of norovirus outbreak epidemics: Recent insights. International Journal of Environmental Research and Public Health, 8(4), 1141–1149.CrossRefGoogle Scholar
  124. Martinez, K., Rao, C., & Burton, N. (2004). Exposure assessment and analysis for biological agents. Grana, 43(4), 193–208.CrossRefGoogle Scholar
  125. Matysik, S., Herbarth, O., & Mueller, A. (2008). Determination of volatile metabolites originating from mould growth on wall paper and synthetic media. Journal of Microbiological Methods, 75(2), 182–187.CrossRefGoogle Scholar
  126. Matysik, S., Herbarth, O., & Mueller, A. (2009). Determination of microbial volatile organic compounds (MVOCs) by passive sampling onto charcoal sorbents. Chemosphere, 76(1), 114–119.CrossRefGoogle Scholar
  127. McDonnell, G., & Burke, P. (2011). Disinfection: Is it time to reconsider Spaulding? Journal of Hospital Infection, 78(3), 163–170.CrossRefGoogle Scholar
  128. McKernan, L. T., Wallingford, K. M., Hein, M. J., Burge, H., Rogers, C. A., & Herrick, R. (2008). Monitoring microbial populations on wide-body commercial passenger aircraft. Annals of Occupational Hygiene, 52(2), 139–149.Google Scholar
  129. McKinney, K. R., Gong, Y. Y., & Lewis, T. G. (2006). Environmental transmission of SARS at Amoy Gardens. Journal of Environmental Health, 68(9), 26–30.Google Scholar
  130. Meklin, T., Hyvärinen, A., Toivola, M., Reponen, T., Koponen, V., Husman, T., et al. (2003). Effect of building frame and moisture damage on microbiological indoor air quality in school buildings. AIHA Journal, 64(1), 108–116.CrossRefGoogle Scholar
  131. Mendell, M. J., & Heath, G. A. (2005). Do indoor pollutants and thermal conditions in schools influence student performance? A critical review of the literature. Indoor Air, 15(1), 27–52.CrossRefGoogle Scholar
  132. Mendell, M. J., Fisk, W. J., Kreiss, K., Levin, H., Alexander, D., Cain, W. S., et al. (2002). Improving the health of workers in indoor environments: priority research needs for a national occupational research agenda. American Journal of Public Health, 92(9), 1430–1440.CrossRefGoogle Scholar
  133. Mendell, M. J., Naco, G. M., Wilcox, T. G., & Sieber, W. K. (2003). Environmental risk factors and work-related lower respiratory symptoms in 80 office buildings: An exploratory analysis of NIOSH data. American Journal of Industrial Medicine, 43(6), 630–641.CrossRefGoogle Scholar
  134. Mendell, M. J., Cozen, M., Lei-Gomez, Q., Brightman, H. S., Erdmann, C. A., Girman, J. R., et al. (2006). Indicators of moisture and ventilation system contamination in US office buildings as risk factors for respiratory and mucous membrane symptoms: Analyses of the EPA BASE data. Journal of Occupational and Environmental Hygiene, 3(5), 225–233.CrossRefGoogle Scholar
  135. Mendell, M. J., Eliseeva, E. A., Davies, M. M., Spears, M., Lobscheid, A., Fisk, W. J., et al. (2013). Association of classroom ventilation with reduced illness absence: A prospective study in California elementary schools. Indoor Air, 23(6), 515–528.CrossRefGoogle Scholar
  136. Menetrez, M. Y., & Foarde, K. K. (2004). Research and development of prevention and control measures for mold contamination. Indoor and Built Environment, 13(2), 109–114.CrossRefGoogle Scholar
  137. Mesa-Frias, M., Chalabi, Z., & Foss, A. M. (2014). Quantifying uncertainty in health impact assessment: A case-study example on indoor housing ventilation. Environment International, 62, 95–103.CrossRefGoogle Scholar
  138. Millqvist, E., & Löwhagen, O. (1998). Methacholine provocations do not reveal sensitivity to strong scents. Annals of Allergy, Asthma & Immunology, 80(5), 381–384.CrossRefGoogle Scholar
  139. Millqvist, E., Bende, M., & Löwhagen, O. (1998). Sensory hyperreactivity–A possible mechanism underlying cough and asthma-like symptoms. Allergy, 53(12), 1208–1212.CrossRefGoogle Scholar
  140. Milton, D. K., Glencross, P. M., & Walters, M. D. (2000). Risk of sick leave associated with outdoor air supply rate, humidification, and occupant complaints. Indoor Air, 10(4), 212–221.CrossRefGoogle Scholar
  141. Mitchell, C. S., Zhang, J. J., Sigsgaard, T., Jantunen, M., Lioy, P. J., Samson, R., et al. (2007). Current state of the science: Health effects and indoor environmental quality. Environmental Health Perspectives, 115(6), 958–964.CrossRefGoogle Scholar
  142. Mizoue, T., Reijula, K., & Andersson, K. (2001). Environmental tobacco smoke exposure and overtime work as risk factors for sick building syndrome in Japan. American Journal of Epidemiology, 154(9), 803–808.CrossRefGoogle Scholar
  143. Mølhave, L. (2008). Volatile organic compounds and sick building syndrome. In M. Lippmann (Ed.), Environmental toxicants: Human exposures and their health effects (3rd ed., pp. 241–256). New York: Wiley.Google Scholar
  144. Mølhave, L. (2011). Sick building syndrome. Encyclopedia of Environmental Health (pp. 61–67). Elsevier.Google Scholar
  145. Morey, P., Worthan, A., Weber, A., Horner, E., Black, M., & Muller, W. (1997). Microbial VOCs in moisture damaged buildings. In IAQ Proceedings of Healthy Buildings (pp. 245–250).Google Scholar
  146. Moularat, S., Robine, E., Ramalho, O., & Oturan, M. A. (2008a). Detection of fungal development in closed spaces through the determination of specific chemical targets. Chemosphere, 72(2), 224–232.Google Scholar
  147. Moularat, S., Robine, E., Ramalho, O., & Oturan, M. A. (2008b). Detection of fungal development in a closed environment through the identification of specific VOC: demonstration of a specific VOC fingerprint for fungal development. Science of the Total Environment, 407(1), 139–146.Google Scholar
  148. Moularat, S., Hulin, M., Robine, E., Annesi-Maesano, I., & Caillaud, D. (2011). Airborne fungal volatile organic compounds in rural and urban dwellings: Detection of mould contamination in 94 homes determined by visual inspection and airborne fungal volatile organic compounds method. Science of the Total Environment, 409(11), 2005–2009.CrossRefGoogle Scholar
  149. Muise, B., Seo, D. C., Blair, E. E., & Applegate, T. (2010). Mold spore penetration through wall service outlets: A pilot study. Environmental Monitoring and Assessment, 163(1), 95–104.CrossRefGoogle Scholar
  150. Murtoniemi, T., Nevalainen, A., & Hirvonen, M. R. (2003). Effect of plasterboard composition on Stachybotrys chartarum growth and biological activity of spores. Applied and Environmental Microbiology, 69(7), 3751–3757.CrossRefGoogle Scholar
  151. Myatt, T. A., Johnston, S. L., Zuo, Z., Wand, M., Kebadze, T., Rudnick, S., et al. (2004). Detection of airborne rhinovirus and its relation to outdoor air supply in office environments. American Journal of Respiratory and Critical Care Medicine, 169(11), 1187–1190.CrossRefGoogle Scholar
  152. Nag, A., & Nag, P. K. (2004). Do the work stress factors of women telephone operators change with the shift schedules? International Journal of Industrial Ergonomics, 33(5), 449–461.CrossRefGoogle Scholar
  153. Nakano, J., Tanabe, S. I., & Kimura, K. I. (2002). Differences in perception of indoor environment between Japanese and non-Japanese workers. Energy and Buildings, 34(6), 615–621.CrossRefGoogle Scholar
  154. Nielsen, K. F. (2003). Mycotoxin production by indoor molds. Fungal Genetics and Biology, 39(2), 103–117.CrossRefMathSciNetGoogle Scholar
  155. Nielsen, P. V. (2009). Control of airborne infectious diseases in ventilated spaces. Journal of the Royal Society Interface, 6(Suppl 6), S747–S755.Google Scholar
  156. Nieminen, S. M., Kärki, R., Auriola, S., Toivola, M., Laatsch, H., Laatikainen, R., et al. (2002). Isolation and identification of Aspergillus fumigatus mycotoxins on growth medium and some building materials. Applied and Environmental Microbiology, 68(10), 4871–4875.CrossRefGoogle Scholar
  157. Nino, E., Fasanella, R., & Di Tommaso, R. M. (2011). Submerged rectangular air jets as a particulate barrier. Building and Environment, 46(11), 2375–2386.CrossRefGoogle Scholar
  158. Nordström, K., Norbäck, D., & Akselsson, R. (1994). Effect of air humidification on the sick building syndrome and perceived indoor air quality in hospitals: A four month longitudinal study. Occupational and Environmental Medicine, 51(10), 683–688.CrossRefGoogle Scholar
  159. Norhidayah, A., Chia-Kuang, L., Azhar, M. K., & Nurulwahida, S. (2013). Indoor air quality and sick building syndrome in three selected buildings. In Malaysian Technical Universities Conference on Engineering & Technology 2012, MUCET 2012 Part 3Civil and Chemical Engineering; Procedia Engineering53, 93–98.Google Scholar
  160. Ooi, P. L., Goh, K. T., Phoon, M. H., Foo, S. C., & Yap, H. M. (1998). Epidemiology of sick building syndrome and its associated risk factors in Singapore. Occupational and Environmental Medicine, 55(3), 188–193.CrossRefGoogle Scholar
  161. Ortíz-Castro, R., Contreras-Cornejo, H. A., Macías-Rodríguez, L., & López-Bucio, J. (2009). The role of microbial signals in plant growth and development. Plant Signaling & Behavior, 4(8), 701–712.CrossRefGoogle Scholar
  162. Pal, T. M., de Monchy, J. G. R., Groothoff, J. W., & Post, D. (2000). Exposure and acute exposure-effects before and after modification of a contaminated humidification system in a synthetic-fibre plant. International Archives of Occupational and Environmental Health, 73(6), 369–375.CrossRefGoogle Scholar
  163. Pearn, J. (1995). Ciguatera-a potent cause of the chronic fatigue syndrome. EOS-ROMA, 15, 63-63.Google Scholar
  164. Phares, C. R., Russell, E., Thigpen, M. C., Service, W., Crist, M. B., Salyers, M., et al. (2007). Legionnaires’ disease among residents of a long-term care facility: The sentinel event in a community outbreak. American Journal of Infection Control, 35(5), 319–323.CrossRefGoogle Scholar
  165. Pizzigallo, E., Racciatti, D., & Vecchiet, J. (1999). Clinical and pathophysiological aspects of chronic fatigue syndrome. Journal of Musculoskeletal Pain, 7(1–2), 217–224.CrossRefGoogle Scholar
  166. Radon, K., Gerhardinger, U., Schulze, A., Zock, J. P., Norback, D., Toren, K., et al. (2008). Occupation and adult onset of rhinitis in the general population. Occupational and Environmental Medicine, 65(1), 38–43.CrossRefGoogle Scholar
  167. Ramazzini, B. (1713). The Diseases of Workers. Translated by W. Wright, (With a Portrait), 1940. Chicago, University of Chicago Press; Latin Text: De Morbis Artificum Bernardini Ramazzini Diatriba.Google Scholar
  168. Reijula, K., & Sundman-Digert, C. (2004). Assessment of indoor air problems at work with a questionnaire. Occupational and Environmental Medicine, 61(1), 33–38.Google Scholar
  169. Rene, E., Montes, M., Veiga, M. C., & Kennes, C. (2010). Biotreatment of gas-phase VOC mixtures from fibreglass and composite manufacturing industry. Journal of Biotechnology, 150(1), 218–219.CrossRefGoogle Scholar
  170. Reponen, T. (2011). Methodologies for assessing bioaerosol exposures. Encyclopedia of environmental health (pp. 722–730).Google Scholar
  171. Reponen, T., Seo, S. C., Grimsley, F., Lee, T., Crawford, C., & Grinshpun, S. A. (2007). Fungal fragments in moldy houses: a field study in homes in New Orleans and Southern Ohio. Atmospheric Environment, 41(37), 8140–8149.CrossRefGoogle Scholar
  172. Reponen, T., Singh, U., Schaffer, C., Vesper, S., Johansson, E., Adhikari, A., et al. (2010). Visually observed mold and moldy odor versus quantitatively measured microbial exposure in homes. Science of the Total Environment, 408(22), 5565–5574.CrossRefGoogle Scholar
  173. Reynolds, S. J., Black, D. W., Borin, S. S., Breuer, G., Burmeister, L. F., Fuortes, L. J., et al. (2001). Indoor environmental quality in six commercial office buildings in the midwest United States. Applied Occupational and Environmental Hygiene, 16(11), 1065–1077.CrossRefGoogle Scholar
  174. Richards, A. L., Hyams, K. C., Watts, D. M., Rozmajzl, P. J., Woody, J. N., & Merrell, B. R. (1993). Respiratory disease among military personnel in Saudi Arabia during Operation Desert Shield. American Journal of Public Health, 83(9), 1326–1329.CrossRefGoogle Scholar
  175. Ringsberg, K. C., & Åkerlind, I. (1999). Presence of hyperventilation in patients with asthma-like symptoms but negative asthma test responses: Provocation with voluntary hyperventilation and mental stress. Journal of Allergy and Clinical Immunology, 103(4), 601–608.CrossRefGoogle Scholar
  176. Ringsberg, K. C., Wetterqvist, H., Löwhagen, O., & Sivik, T. (1997). Physical capacity and dyspnea in patients with asthma-like symptoms but negative asthma tests. Allergy, 52(5), 532–540.CrossRefGoogle Scholar
  177. Roark, S. E., Cabrera-Fonseca, J., Milazzo, M. C., White, J. H., & Wander, J. D. (2004). Catalytic oxidation of volatile organic liquids. Journal of Environmental Engineering, 130(3), 329–337.CrossRefGoogle Scholar
  178. Robertson, W., Robertson, A. S., Burge, C. B., Moore, V. C., Jaakkola, M. S., Dawkins, P. A., et al. (2007). Clinical investigation of an outbreak of alveolitis and asthma in a car engine manufacturing plant. Thorax, 62(11), 981–990.CrossRefGoogle Scholar
  179. Runeson, R., Norbäck, D., & Stattin, H. (2003). Symptoms and sense of coherence–A follow-up study of personnel from workplace buildings with indoor air problems. International Archives of Occupational and Environmental Health, 76(1), 29–38.Google Scholar
  180. Runeson, R., Wahlstedt, K., Wieslander, G., & Norbäck, D. (2006). Personal and psychosocial factors and symptoms compatible with sick building syndrome in the Swedish workforce. Indoor Air, 16(6), 445–453.CrossRefGoogle Scholar
  181. Rylander, R. (2010). Organic dust induced pulmonary disease-the role of mould derived beta-glucan. Annals of Agricultural and Environmental Medicine, 17(1), 9–13.Google Scholar
  182. Saijo, Y., Nakagi, Y., Ito, T., Sugioka, Y., Endo, H., & Yoshida, T. (2009). Relation of dampness to sick building syndrome in Japanese public apartment houses. Environmental Health and Preventive Medicine, 14(1), 26–35.CrossRefGoogle Scholar
  183. Sailer, M. F., van Nieuwenhuijzen, E. J., & Knol, W. (2010). Forming of a functional biofilm on wood surfaces. Ecological Engineering, 36(2), 163–167.CrossRefGoogle Scholar
  184. Salo, P. M., Yin, M., Arbes, S. J., Cohn, R. D., Sever, M., Muilenberg, M., et al. (2005). Dustborne alternaria alternata antigens in US homes: Results from the National Survey of Lead and Allergens in Housing. Journal of Allergy and Clinical Immunology, 116(3), 623–629.CrossRefGoogle Scholar
  185. Salthammer, T. (1997). Emission of volatile organic compounds from furniture coatings. Indoor Air, 7(3), 189–197.CrossRefGoogle Scholar
  186. Sarwar, G., Corsi, R., Allen, D., & Weschler, C. (2002). Production an levels of selected indoor radicals: A modeling assessment. In Proceedings of Indoor Air, The Ninth International Conference on Indoor Air Quality and Climate, June 2002 (pp. 189–197).Google Scholar
  187. Schleibinger, H., Laussmann, D., Bornehag, C. G., Eis, D., & Rueden, H. (2008). Microbial volatile organic compounds in the air of moldy and mold-free indoor environments. Indoor Air, 18(2), 113–124.CrossRefGoogle Scholar
  188. Schmier, J. K., & Leidy, N. K. (1998). The complexity of treatment adherence in adults with asthma: Challenges and opportunities. Journal of Asthma, 35(6), 455–472.CrossRefGoogle Scholar
  189. Schneider, W. J., Furth, P. A., Blalock, T. H., & Sherrill, T. A. (1999). A pilot study of a headache program in the workplace: The effect of education. Journal of Occupational and Environmental Medicine, 41(3), 202–209.CrossRefGoogle Scholar
  190. Schwartz, B. S., Stewart, W. F., Simon, D., & Lipton, R. B. (1998). Epidemiology of tension-type headache. JAMA, 279(5), 381–383.CrossRefGoogle Scholar
  191. Seepana, S., & Lai, A. C. (2012). Experimental and numerical investigation of interpersonal exposure of sneezing in a full-scale chamber. Aerosol Science and Technology, 46(5), 485–493.CrossRefGoogle Scholar
  192. Selvamurthy, W., Ray, U. S., Tiwary, R. S., Singh, A. P., & Ranganathan, S. (1996). Psychogenic mass illness—A case study in Calcutta telephones. In P. K. Nag (Ed.), Ergonomics and work design: Emerging issues in organizational sciences (pp. 332–347).Google Scholar
  193. Sen, B., & Asan, A. (2009). Fungal flora in indoor and outdoor air of different residential houses in Tekirdag City (Turkey): Seasonal distribution and relationship with climatic factors. Environmental Monitoring and Assessment, 151(1), 209–219.CrossRefGoogle Scholar
  194. Seo, S. C., Reponen, T., Levin, L., & Grinshpun, S. A. (2009). Size-fractionated (1 → 3)-β-D-glucan concentrations aerosolized from different moldy building materials. Science of the Total Environment, 407(2), 806–814.CrossRefGoogle Scholar
  195. Seppänen, O. A., & Fisk, W. J. (2004). Summary of human responses to ventilation. Indoor Air, 14(s7), 102–118.CrossRefGoogle Scholar
  196. Seppänen, O. A., Fisk, W. J., & Mendell, M. J. (1999). Association of ventilation rates and CO2 concentrations with health and other responses in commercial and institutional buildings. Indoor Air, 9(4), 226–252.CrossRefGoogle Scholar
  197. Seppänen, O., Fisk, W. J., & Lei, Q. H. (2006). Ventilation and performance in office work. Indoor Air, 16(1), 28–36.CrossRefGoogle Scholar
  198. Shinoj, S., Visvanathan, R., Panigrahi, S., & Kochubabu, M. (2011). Oil palm fiber (OPF) and its composites: A review. Industrial Crops and Products, 33(1), 7–22.CrossRefGoogle Scholar
  199. Shirakawa, M. A., Loh, K., John, V. M., Silva, M. E. S., & Gaylarde, C. C. (2011). Biodeterioration of painted mortar surfaces in tropical urban and coastal situations: Comparison of four paint formulations. International Biodeterioration & Biodegradation, 65(5), 669–674.CrossRefGoogle Scholar
  200. Shoemaker, R. C., & House, D. E. (2005). A time-series study of sick building syndrome: Chronic, biotoxin-associated illness from exposure to water-damaged buildings. Neurotoxicology and Teratology, 27(1), 29–46.CrossRefGoogle Scholar
  201. Shoemaker, R. C., Rash, J. M., & Simon, E. W. (2005). Sick building syndrome in water-damaged buildings: generalization of the chronic, biotoxin associated illness paradigm to indoor toxigenic fungi. In E. Johanning (Ed.), Bioaerosols, fungi, bacteria, mycotoxins and human health (pp. 66–77). Fungal Research Group Foundation Inc., Albany, NY: Eastern New York Occupational & Environmental Health Center.Google Scholar
  202. Simoni, M., Annesi-Maesano, I., Sigsgaard, T., Norback, D., Wieslander, G., Nystad, W., et al. (2010). School air quality related to dry cough, rhinitis and nasal patency in children. European Respiratory Journal, 35(4), 742–749.CrossRefGoogle Scholar
  203. Simon-Nobbe, B., Denk, U., Pöll, V., Rid, R., & Breitenbach, M. (2008). The spectrum of fungal allergy. International Archives of Allergy and Immunology, 145(1), 58–86.CrossRefGoogle Scholar
  204. Sirois, F. (2013). Perspectives on epidemic. Mass psychogenic illness: A social psychological analysis (p. 217).Google Scholar
  205. Sivasubramani, S. K., Niemeier, R. T., Reponen, T., & Grinshpun, S. A. (2004a). Assessment of the aerosolization potential for fungal spores in moldy homes. Indoor Air, 14(6), 405–412.CrossRefGoogle Scholar
  206. Sivasubramani, S. K., Niemeier, R. T., Reponen, T., & Grinshpun, S. A. (2004b). Fungal spore source strength tester: laboratory evaluation of a new concept. Science of the Total Environment, 329(1), 75–86.CrossRefGoogle Scholar
  207. Skov, P., Valbjørn, O., & Pedersen, B. V. (1989). Influence of personal characteristics, job-related factors and psychosocial factors on the sick building syndrome. Scandinavian Journal of Work, Environment & Health, 286–295.Google Scholar
  208. Skov, P., Valbjørn, O., & Pedersen, B. V. (1990). Influence of indoor climate on the sick building syndrome in an office environment. Scandinavian Journal of Work, Environment & Health, 363–371.Google Scholar
  209. Stenberg, B., & Wall, S. (1995). Why do women report ’sick building symptoms’ more often than men? Social Science & Medicine, 40(4), 491–502.CrossRefGoogle Scholar
  210. Stenberg, B., Mild, K. H., Sandström, M., Sundell, J., & Wall, S. (1993). A prevalence study of the sick building syndrome (SBS) and facial skin symptoms in office workers. Indoor Air, 3(2), 71–81.CrossRefGoogle Scholar
  211. Sterflinger, K., Ettenauer, J., & Pinar, G. (2013). Bio-susceptibility of materials and thermal insulation systems used for historical buildings. European Geosciences Union General Assembly 2013, EGU, Division Energy, Resources & the Environment. Energy Procedia, 40, 499–506.CrossRefGoogle Scholar
  212. Stetzenbach, L. D., Buttner, M. P., & Cruz, P. (2004). Detection and enumeration of airborne biocontaminants. Current Opinion in Biotechnology, 15(3), 170–174.CrossRefGoogle Scholar
  213. Straus, D. C. (2009). Molds, mycotoxins, and sick building syndrome. Toxicology and Industrial Health, 25(9–10), 617–635.CrossRefGoogle Scholar
  214. Sun, Y., Wang, Z., Zhang, Y., & Sundell, J. (2011a). In China, students in crowded dormitories with a low ventilation rate have more common colds: Evidence for airborne transmission. PloS one, 6(11), e27140.CrossRefGoogle Scholar
  215. Sun, Y., Zhang, Y., Bao, L., Fan, Z., & Sundell, J. (2011b). Ventilation and dampness in dorms and their associations with allergy among college students in China: A case–control study. Indoor Air, 21(4), 277–283.CrossRefGoogle Scholar
  216. Sundell, J. (1996). What we know, and dont know about sick building syndrome. ASHRAE Journal, 38(6).Google Scholar
  217. Sundell, J. (2004). On the history of indoor air quality and health. Indoor Air, 14(s7), 51–58.CrossRefGoogle Scholar
  218. Sundell, J., Levin, H., Nazaroff, W. W., Cain, W. S., Fisk, W. J., Grimsrud, D. T., et al. (2011). Ventilation rates and health: multidisciplinary review of the scientific literature. Indoor Air, 21(3), 191–204.CrossRefGoogle Scholar
  219. Syazwan, A. I., Juliana, J., Norhafizalina, O., Azman, Z. A., & Kamaruzaman, J. (2009). Indoor air quality and sick building syndrome in Malaysian buildings. Global Journal of Health Science, 1(2), 126–135.Google Scholar
  220. Takahashi, Y., Takano, K., Suzuki, M., Nagai, S., Yokosuka, M., Takeshita, T., et al. (2008). Two routes for pollen entering indoors: Ventilation and clothes. Journal of Investigational Allergology and Clinical Immunology, 18, 382–388.Google Scholar
  221. Takeda, M., Saijo, Y., Yuasa, M., Kanazawa, A., Araki, A., & Kishi, R. (2009). Relationship between sick building syndrome and indoor environmental factors in newly built Japanese dwellings. International Archives of Occupational and Environmental Health, 82(5), 583–593.CrossRefGoogle Scholar
  222. Tang, J. W. (2009). The effect of environmental parameters on the survival of airborne infectious agents. Journal of the Royal Society Interface, 6(Suppl 6), S737–S746.Google Scholar
  223. Tang, J. W., & Li, Y. (2007). Transmission of influenza A in human beings. The Lancet Infectious Diseases, 7(12), 758–761.CrossRefGoogle Scholar
  224. Tarlo, S. M., Balmes, J., Balkissoon, R., Beach, J., Beckett, W., Bernstein, D.,et al. (2008). Diagnosis and management of work-related asthma: American College of Chest Physicians Consensus Statement. CHEST Journal, 134(3_suppl), 1S–41S.Google Scholar
  225. Teeratakulpisarn, J., Pairojkul, S., & Heng, S. (2000). Survey of the prevalence of asthma’, allergic rhinitis and eczema in schoolchildren from Khon Kaen, Northeast Thailand: An ISAAC Study. Asian Pacific Journal of Allergy and Immunology, 18(4), 187–194.Google Scholar
  226. Tellier, R. (2009). Aerosol transmission of influenza A virus: A review of new studies. Journal of the Royal Society Interface, 6(suppl 6), S783–S790.Google Scholar
  227. Terčelj, M., Salobir, B., Harlander, M., & Rylander, R. (2011). Fungal exposure in homes of patients with sarcoidosis-an environmental exposure study. Environmental Health, 10(1), 8.CrossRefGoogle Scholar
  228. Tsai, D. H., Lin, J. S., & Chan, C. C. (2012). Office workers’ sick building syndrome and indoor carbon dioxide concentrations. Journal of Occupational and Environmental Hygiene, 9(5), 345–351.CrossRefGoogle Scholar
  229. Tuomainen, A., Seuri, M., & Sieppi, A. (2004). Indoor air quality and health problems associated with damp floor coverings. International Archives of Occupational and Environmental Health, 77(3), 222–226.Google Scholar
  230. Tuomi, T., Reijula, K., Johnsson, T., Hemminki, K., Hintikka, E. L., Lindroos, O., et al. (2000). Mycotoxins in crude building materials from water-damaged buildings. Applied and Environmental Microbiology, 66(5), 1899–1904.CrossRefGoogle Scholar
  231. US OSHA. (2003). Brief guide to mold in the workplace. Occupational Safety and Health Administration, US Department of Labor, Washington, DC.
  232. Vacher, S., Hernandez, C., Bärtschi, C., & Poussereau, N. (2010). Impact of paint and wall-paper on mould growth on plasterboards and aluminum. Building and Environment, 45(4), 916–921.CrossRefGoogle Scholar
  233. Vance, P. H., & Weissfeld, A. S. (2007). The controversies surrounding sick building syndrome. Clinical Microbiology Newsletter, 29(10), 73–76.CrossRefGoogle Scholar
  234. Wang, X., Yu, J. C., Chen, Y., Wu, L., & Fu, X. (2006). ZrO2-modified mesoporous nanocrystalline TiO2-xNx as efficient visible light photocatalysts. Environmental Science & Technology, 40(7), 2369–2374.CrossRefGoogle Scholar
  235. Wang, S., Ang, H. M., & Tade, M. O. (2007). Volatile organic compounds in indoor environment and photocatalytic oxidation: State of the art. Environment International, 33(5), 694–705.CrossRefGoogle Scholar
  236. Wargocki, P., Lagercrantz, L., Witterseh, T., Sundell, J., Wyon, D. P., & Fanger, P. O. (2002). Subjective perceptions, symptom intensity and performance: A comparison of two independent studies, both changing similarly the pollution load in an office. Indoor Air, 12(2), 74–80.CrossRefGoogle Scholar
  237. Wargocki, P., Wyon, D. P., & Fanger, P. O. (2004). The performance and subjective responses of call-center operators with new and used supply air filters at two outdoor air supply rates. Indoor Air, 14(s8), 7–16.CrossRefGoogle Scholar
  238. Weinhold, B. (2007). A spreading concern: Inhalational health effects of mold. Environmental Health Perspectives, 115(6), A300–A305.CrossRefGoogle Scholar
  239. Wilson, A. D., & Baietto, M. (2009). Applications and advances in electronic-nose technologies. Sensors, 9(7), 5099–5148.CrossRefGoogle Scholar
  240. Wilson, A. D., & Baietto, M. (2011). Advances in electronic-nose technologies developed for biomedical applications. Sensors, 11(1), 1105–1176.CrossRefGoogle Scholar
  241. Wolkoff, P. (1999). How to measure and evaluate volatile organic compound emissions from building products. A perspective. Science of the Total Environment, 227(2), 197–213.CrossRefGoogle Scholar
  242. Wong, T. W., Lee, C. K., Tam, W., Lau, J. T. F., Yu, T. S., Lui, S. F., et al. (2004). Cluster of SARS among medical students exposed to single patient. Hong Kong. Emerging Infectious Diseases, 10(2), 269–276.CrossRefGoogle Scholar
  243. Wu, M. J., Feng, Y. S., Sung, W. P., & Surampalli, R. Y. (2011). Quantification and analysis of airborne bacterial characteristics in a nursing care institution. Journal of the Air & Waste Management Association, 61(7), 732–739.CrossRefGoogle Scholar
  244. Yang, G. H., Jarvis, B. B., Chung, Y. J., & Pestka, J. J. (2000). Apoptosis induction by the satratoxins and other trichothecene mycotoxins: relationship to ERK, p38 MAPK, and SAPK/JNK activation. Toxicology and Applied Pharmacology, 164(2), 149–160.CrossRefGoogle Scholar
  245. Yau, Y. H., & Ng, W. K. (2011). A comparison study on energy savings and fungus growth control using heat recovery devices in a modern tropical operating theatre. Energy Conversion and Management, 52(4), 1850–1860.CrossRefGoogle Scholar
  246. Yazicioglu, M., Asan, A., Ones, U., Vatansever, U., Sen, B., Ture, M., et al. (2004). Indoor airborne fungal spores and home characteristics in asthmatic children from Edirne region of Turkey. Allergologia et Immunopathologia, 32(4), 197–203.CrossRefGoogle Scholar
  247. Yike, I. (2011). Fungal proteases and their pathophysiological effects. Mycopathologia, 171(5), 299–323.CrossRefGoogle Scholar
  248. Yoshino, N., Takizawa, M., Akiba, H., Okumura, H., Tashiro, F., Honda, M., et al. (1996). Transient elevation of intracellular calcium ion levels as an early event in T-2 toxin-induced apoptosis in human promyelotic cell line HL-60. Natural Toxins, 4(5), 234–241.CrossRefGoogle Scholar
  249. Zain, M. E. (2011). Impact of mycotoxins on humans and animals. Journal of Saudi Chemical Society, 15(2), 129–144.CrossRefMathSciNetGoogle Scholar
  250. Zalejska-Jonsson, A., & Wilhelmsson, M. (2013). Impact of perceived indoor environment quality on overall satisfaction in Swedish dwellings. Building and Environment, 63, 134–144.CrossRefGoogle Scholar
  251. Zhen, S., Li, K., Yin, L., Yao, M., Zhang, H., Chen, L., et al. (2009). A comparison of the efficiencies of a portable BioStage impactor and a Reuter centrifugal sampler (RCS) High flow for measuring airborne bacteria and fungi concentrations. Journal of Aerosol Science, 40(6), 503–513.CrossRefGoogle Scholar
  252. Zhou, H. R., Harkema, J. R., Yan, D., & Pestka, J. J. (1999). Amplified proinflammatory cytokine expression and toxicity in mice coexposed to lipopolysaccharide and the trichothecene vomitoxin (deoxynivalenol). Journal of Toxicology and Environmental Health Part A, 57(2), 115–136.CrossRefGoogle Scholar
  253. Zhu, S., Kato, S., & Yang, J. H. (2006). Study on transport characteristics of saliva droplets produced by coughing in a calm indoor environment. Building and Environment, 41(12), 1691–1702.CrossRefGoogle Scholar
  254. Zock, J. P. (2005). World at work: cleaners. Occupational and Environmental Medicine, 62(8), 581–584.CrossRefGoogle Scholar
  255. Zweers, T., Preller, L., Brunekreef, B., & Boleij, J. S. M. (1992). Health and indoor climate complaints of 7043 office workers in 61 buildings in The Netherlands. Indoor Air, 2(3), 127–136.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Pranab Kumar Nag
    • 1
  1. 1.School of Environment and Disaster ManagementRamakrishna Mission Vivekananda UniversityKolkataIndia

Personalised recommendations