Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 538 Accesses

Abstract

This chapter describes the approaches for the growth of high-quality silicon carbide. The doping methods for n-type and p-type SiC with the inclusion of selective doping are presented. Various fabrication strategies are introduced, including wet etching and oxidation. Fundamental properties of Ohmic and Schottky contacts to SiC are included. This chapter also gives brief examples of fabrication processes to achieve standard MEMS structures such as cantilevers and membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Yakimova, M. Syväjärvi, M. Tuominen, T. Iakimov, P. Råback, A. Vehanen et al., Seeded sublimation growth of 6H and 4H–SiC crystals. Mater. Sci. Eng., B 61, 54–57 (1999)

    Article  Google Scholar 

  2. J. Jenny, S.G. Müller, A. Powell, V. Tsvetkov, H. Hobgood, R. Glass et al., High-purity semi-insulating 4H-SiC grown by the seeded-sublimation method. J. Electron. Mater. 31, 366–369 (2002)

    Article  CAS  Google Scholar 

  3. D. Barrett, R. Seidensticker, W. Gaida, R. Hopkins, W. Choyke, SiC boule growth by sublimation vapor transport. J. Cryst. Growth 109, 17–23 (1991)

    Article  CAS  Google Scholar 

  4. H. Li, X. Chen, D. Ni, X. Wu, Factors affecting the graphitization behavior of the powder source during seeded sublimation growth of SiC bulk crystal. J. Cryst. Growth 258, 100–105 (2003)

    Article  CAS  Google Scholar 

  5. R. Yakimova, E. Janzén, Current status and advances in the growth of SiC. Diam. Relat. Mater. 9, 432–438 (2000)

    Article  CAS  Google Scholar 

  6. R. Puybaret, J. Hankinson, J. Palmer, C. Bouvier, A. Ougazzaden, P.L. Voss et al., Scalable control of graphene growth on 4H-SiC C-face using decomposing silicon nitride masks. J. Phys. D Appl. Phys. 48, 152001 (2015)

    Article  Google Scholar 

  7. T.-K. Nguyen, H.-P. Phan, T. Dinh, T. Toriyama, K. Nakamura, A.R.M. Foisal et al., Isotropic piezoresistance of p-type 4H-SiC in (0001) plane. Appl. Phys. Lett. 113, 012104 (2018)

    Article  Google Scholar 

  8. T.-K. Nguyen, H.-P. Phan, T. Dinh, A. R. M. Foisal, N.-T. Nguyen, D. Dao, High-temperature tolerance of piezoresistive effect in p-4H-SiC for harsh environment sensing. J. Mater. Chem. C (2018)

    Google Scholar 

  9. T.-K. Nguyen, H.-P. Phan, T. Dinh, K. M. Dowling, A. R. M. Foisal, D. G. Senesky et al., Highly sensitive 4H-SiC pressure sensor at cryogenic and elevated temperatures. Mater. Des. (2018)

    Google Scholar 

  10. A.R. Md Foisal, A. Qamar, H.-P. Phan, T. Dinh, K.-N. Tuan, P. Tanner et al., Pushing the limits of piezoresistive effect by optomechanical coupling in 3C-SiC/Si heterostructure. ACS Appl. Mater. Interfaces. 9, 39921–39925 (2017)

    Article  CAS  Google Scholar 

  11. A.R.M. Foisal, T. Dinh, P. Tanner, H.-P. Phan, T.-K. Nguyen, E.W. Streed et al., Photoresponse of a highly-rectifying 3C-SiC/Si heterostructure under UV and visible illuminations. IEEE Electron Device Lett. (2018)

    Google Scholar 

  12. A. Qamar, P. Tanner, D.V. Dao, H.-P. Phan, T. Dinh, Electrical properties of p-type 3C-SiC/Si heterojunction diode under mechanical stress. IEEE Electron Device Lett. 35, 1293–1295 (2014)

    Article  Google Scholar 

  13. A. Qamar, H.-P. Phan, J. Han, P. Tanner, T. Dinh, L. Wang et al., The effect of device geometry and crystal orientation on the stress-dependent offset voltage of 3C–SiC (100) four terminal devices. J. Mater. Chem. C 3, 8804–8809 (2015)

    Article  CAS  Google Scholar 

  14. A. Qamar, D.V. Dao, J. Han, H.-P. Phan, A. Younis, P. Tanner et al., Pseudo-Hall effect in single crystal 3C-SiC (111) four-terminal devices. J. Mater. Chem. C 3, 12394–12398 (2015)

    Article  CAS  Google Scholar 

  15. A. Qamar, H.-P. Phan, T. Dinh, L. Wang, S. Dimitrijev, D.V. Dao, Piezo-Hall effect in single crystal p-type 3C–SiC (100) thin film grown by low pressure chemical vapor deposition. RSC Adv. 6, 31191–31195 (2016)

    Article  CAS  Google Scholar 

  16. A. Qamar, D.V. Dao, H.-P. Phan, T. Dinh, S. Dimitrijev, Fundamental piezo-Hall coefficients of single crystal p-type 3C-SiC for arbitrary crystallographic orientation. Appl. Phys. Lett. 109, 092903 (2016)

    Article  Google Scholar 

  17. A. Qamar, D.V. Dao, J.S. Han, A. Iacopi, T. Dinh, H.P. Phan et al., Pseudo-hall effect in single crystal n-type 3C-SiC (100) thin film, in Key Engineering Materials (2017), pp. 3–7

    Article  Google Scholar 

  18. L. Wang, S. Dimitrijev, J. Han, A. Iacopi, L. Hold, P. Tanner et al., Growth of 3C–SiC on 150-mm Si (100) substrates by alternating supply epitaxy at 1000 C. Thin Solid Films 519, 6443–6446 (2011)

    Article  CAS  Google Scholar 

  19. L. Wang, S. Dimitrijev, J. Han, P. Tanner, A. Iacopi, L. Hold, Demonstration of p-type 3C–SiC grown on 150 mm Si (1 0 0) substrates by atomic-layer epitaxy at 1000 °C. J. Cryst. Growth 329, 67–70 (2011)

    Article  CAS  Google Scholar 

  20. L. Wang, S. Dimitrijev, A. Fissel, G. Walker, J. Chai, L. Hold et al., Growth mechanism for alternating supply epitaxy: the unique pathway to achieve uniform silicon carbide films on multiple large-diameter silicon substrates. RSC Adv. 6, 16662–16667 (2016)

    Article  CAS  Google Scholar 

  21. A. Taylor, J. Drahokoupil, L. Fekete, L. Klimša, J. Kopeček, A. Purkrt et al., Structural, optical and mechanical properties of thin diamond and silicon carbide layers grown by low pressure microwave linear antenna plasma enhanced chemical vapour deposition. Diam. Relat. Mater. 69, 13–18 (2016)

    Article  CAS  Google Scholar 

  22. T. Frischmuth, M. Schneider, D. Maurer, T. Grille, U. Schmid, Inductively-coupled plasma-enhanced chemical vapour deposition of hydrogenated amorphous silicon carbide thin films for MEMS. Sens. Actuators, A 247, 647–655 (2016)

    Article  CAS  Google Scholar 

  23. M. Lazar, D. Carole, C. Raynaud, G. Ferro, S. Sejil, F. Laariedh et al., Classic and alternative methods of p-type doping 4H-SiC for integrated lateral devices, in Semiconductor Conference (CAS), 2015 International, 2015, pp. 145–148

    Google Scholar 

  24. Z. Li, X. Ding, F. Li, X. Liu, S. Zhang, H. Long, Enhanced dielectric loss induced by the doping of SiC in thick defective graphitic shells of Ni@ C nanocapsules with ash-free coal as carbon source for broadband microwave absorption. J. Phys. D Appl. Phys. 50, 445305 (2017)

    Article  Google Scholar 

  25. D. Zhuang, J. Edgar, Wet etching of GaN, AlN, and SiC: a review. Mater. Sci. Eng. R: Rep. 48, 1–46 (2005)

    Article  Google Scholar 

  26. S. Pearton, W. Lim, F. Ren, D. Norton, Wet chemical etching of wide bandgap semiconductors-GaN, ZnO and SiC. ECS Trans. 6, 501–512 (2007)

    Article  CAS  Google Scholar 

  27. H. Ekinci, V.V. Kuryatkov, D.L. Mauch, J.C. Dickens, S.A. Nikishin, Effect of BCl3 in chlorine-based plasma on etching 4H-SiC for photoconductive semiconductor switch applications. J. Vac. Sci. Technol. B, Nanotechnol. Microelectron.: Mater. Process. Meas. Phenom. 32, 051205 (2014)

    Article  Google Scholar 

  28. P. Yih, V. Saxena, A. Steckl, A review of SiC reactive ion etching in fluorinated plasmas. Phys. Status Solidi B, 202, 605–642 (1997)

    Article  CAS  Google Scholar 

  29. L. Jiang, R. Cheung, R. Brown, A. Mount, Inductively coupled plasma etching of SiC in SF 6/O 2 and etch-induced surface chemical bonding modifications. J. Appl. Phys. 93, 1376–1383 (2003)

    Article  CAS  Google Scholar 

  30. S. Rysy, H. Sadowski, R. Helbig, Electrochemical etching of silicon carbide. J. Solid State Electrochem. 3, 437–445 (1999)

    CAS  Google Scholar 

  31. J. Shor, Electrochemical etching of SiC. EMIS Datarev. Ser 13, 141–149 (1995)

    CAS  Google Scholar 

  32. M. Kato, M. Ichimura, E. Arai, P. Ramasamy, Electrochemical etching of 6H-SiC using aqueous KOH solutions with low surface roughness. Jpn. J. Appl. Phys. 42, 4233 (2003)

    Article  CAS  Google Scholar 

  33. H. Morisaki, H. Ono, K. Yazawa, Photoelectrochemical properties of single-crystalline n-SiC in aqueous electrolytes. J. Electrochem. Soc. 131, 2081–2086 (1984)

    Article  CAS  Google Scholar 

  34. M. Gleria, R. Memming, Charge transfer processes at large band gap semiconductor electrodes: reactions at SiC-electrodes. J. Electroanal. Chem. Interfacial Electrochem. 65, 163–175 (1975)

    Article  CAS  Google Scholar 

  35. C. Duval, Inorganic Thermogravimetric Analysis (1963)

    Google Scholar 

  36. M. Katsuno, N. Ohtani, J. Takahashi, H. Yashiro, M. Kanaya, Mechanism of molten KOH etching of SiC single crystals: comparative study with thermal oxidation. Jpn. J. Appl. Phys. 38, 4661 (1999)

    Article  CAS  Google Scholar 

  37. M. Katsuno, N. Ohtani, J. Takahashi, H. Yashiro, M. Kanaya, S. Shinoyama, Etching kinetics of α-SiC single crystals by molten KOH, in Materials Science Forum (1998), pp. 837–840

    Article  CAS  Google Scholar 

  38. L.J. Evans, G.M. Beheim, Deep reactive ion etching (DRIE) of high aspect ratio SiC microstructures using a time-multiplexed etch-passivate process, in Materials Science Forum (2006), pp. 1115–1118

    Google Scholar 

  39. S. Tanaka, K. Rajanna, T. Abe, M. Esashi, Deep reactive ion etching of silicon carbide. J. Vac. Sci. Technol. B, Nanotechnol. Microelectron.: Mater. Process. Meas. Phenom. 19, 2173–2176 (2001)

    Article  CAS  Google Scholar 

  40. P.M. Sarro, Silicon carbide as a new MEMS technology. Sens. Actuators, A 82, 210–218 (2000)

    Article  CAS  Google Scholar 

  41. F. Roccaforte, F. La Via, V. Raineri, Ohmic contacts to SiC. Int. J. High Speed Electron. Syst. 15, 781–820 (2005)

    Article  CAS  Google Scholar 

  42. Z. Wang, W. Liu, C. Wang, Recent progress in Ohmic contacts to silicon carbide for high-temperature applications. J. Electron. Mater. 45, 267–284 (2016)

    Article  CAS  Google Scholar 

  43. J. Riviere, Solid State Surface Science, ed. by Green (Marcel Dekker, NY, 1969), p. 179

    Google Scholar 

  44. T. Kimoto, J.A. Cooper, Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications (Wiley, London, 2014)

    Google Scholar 

  45. L.M. Porter, R.F. Davis, A critical review of ohmic and rectifying contacts for silicon carbide. Mater. Sci. Eng., B 34, 83–105 (1995)

    Article  Google Scholar 

  46. B. Pécz, G. Radnóczi, S. Cassette, C. Brylinski, C. Arnodo, O. Noblanc, TEM study of Ni and Ni2Si ohmic contacts to SiC. Diam. Relat. Mater. 6, 1428–1431 (1997)

    Article  Google Scholar 

  47. A. Kakanakova-Georgieva, T. Marinova, O. Noblanc, C. Arnodo, S. Cassette, C. Brylinski, Characterization of ohmic and Schottky contacts on SiC. Thin Solid Films 343, 637–641 (1999)

    Article  Google Scholar 

  48. J. Wan, M.A. Capano, M.R. Melloch, Formation of low resistivity ohmic contacts to n-type 3C-SiC. Solid-State Electron. 46, 1227–1230 (2002)

    Article  CAS  Google Scholar 

  49. L. Huang, B. Liu, Q. Zhu, S. Chen, M. Gao, F. Qin et al., Low resistance Ti Ohmic contacts to 4H-SiC by reducing barrier heights without high temperature annealing. Appl. Phys. Lett. 100, 263503 (2012)

    Article  Google Scholar 

  50. H. Shimizu, A. Shima, Y. Shimamoto, and N. Iwamuro, Ohmic contact on n-and p-type ion-implanted 4H-SiC with low-temperature metallization process for SiC MOSFETs, Jpn. J. Appl. Phys. 56, p. 04CR15 (2017)

    Article  Google Scholar 

  51. S. Kim, H.-K. Kim, S. Jeong, M.-J. Kang, M.-S. Kang, N.-S. Lee et al, Carrier transport mechanism of Al contacts on n-type 4H-SiC. Mater. Lett. (2018)

    Google Scholar 

  52. S. Rao, G. Pangallo, F. Pezzimenti, F.G. Della Corte, High-performance temperature sensor based on 4H-SiC Schottky diodes. IEEE Electron Device Lett. 36, 720–722 (2015)

    Article  CAS  Google Scholar 

  53. S. Rao, G. Pangallo, F.G. Della Corte, Highly linear temperature sensor based on 4H-silicon carbide pin diodes. IEEE Electron Device Lett. 36, 1205–1208 (2015)

    Article  CAS  Google Scholar 

  54. S. Rao, G. Pangallo, F.G. Della Corte, 4H-SiC pin diode as highly linear temperature sensor. IEEE Trans. Electron Devices 63, 414–418 (2016)

    Article  CAS  Google Scholar 

  55. H.P. Phan, T.K. Nguyen, T. Dinh, H. H. Cheng, F. Mu, A. Iacopi et al., Strain effect in highly‐doped n‐type 3C‐SiC‐on‐glass substrate for mechanical sensors and mobility enhancement. Phys. status solidi A, p. 1800288 (2018)

    Google Scholar 

  56. A. Qamar, T. Dinh, M. Jafari, A. Iacopi, S. Dimitrijev, D.V. Dao, A large pseudo-Hall effect in n-type 3C-SiC (1 0 0) and its dependence on crystallographic orientation for stress sensing applications. Mater. Lett. 213, 11–14 (2018)

    Article  CAS  Google Scholar 

  57. H.P. Phan, T.K. Nguyen, T. Dinh, A. Iacopi, L. Hold, M.J. Shiddiky et al., Robust free-standing nano-thin SiC membranes enable direct photolithography for MEMS sensing applications. Adv. Eng. Mater. 20, 1700858 (2018)

    Article  Google Scholar 

  58. T. Dinh, H.-P. Phan, T. Kozeki, A. Qamar, T. Namazu, N.-T. Nguyen et al., Thermoresistive properties of p-type 3C–SiC nanoscale thin films for high-temperature MEMS thermal-based sensors. RSC Adv. 5, 106083–106086 (2015)

    Article  CAS  Google Scholar 

  59. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, London, 2006)

    Book  Google Scholar 

  60. S.O. Kasap, Principles of Electronic Materials and Devices (McGraw-Hill, New York, 2006)

    Google Scholar 

  61. S. Rao, G. Pangallo, F.G. Della Corte, 4H-SiC pin diode as highly linear temperature sensor. IEEE Trans. Electron Devices 63, 414–418 (2016)

    Article  CAS  Google Scholar 

  62. G. Brezeanu, F. Draghici, F. Craciunioiu, C. Boianceanu, F. Bernea, F. Udrea et al., 4H-SiC Schottky diodes for temperature sensing applications in harsh environments, in Materials Science Forum (2011), pp. 575–578

    Article  CAS  Google Scholar 

  63. R.S. Okojie, Fabricating Ultra-thin Silicon Carbide Diaphragms, Google Patents (2018)

    Google Scholar 

  64. T. Dinh, H.-P. Phan, N. Kashaninejad, T.-K. Nguyen, D.V. Dao, N.-T. Nguyen, An on-chip SiC MEMS device with integrated heating, sensing and microfluidic cooling systems. Adv. Mater. Interfaces 1, 1 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toan Dinh .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dinh, T., Nguyen, NT., Dao, D.V. (2018). Fabrication of SiC MEMS Sensors. In: Thermoelectrical Effect in SiC for High-Temperature MEMS Sensors. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-2571-7_4

Download citation

Publish with us

Policies and ethics