Skip to main content

Introduction to SiC and Thermoelectrical Properties

  • Chapter
  • First Online:
Thermoelectrical Effect in SiC for High-Temperature MEMS Sensors

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

This chapter presents the general background on silicon carbide as a functional semiconductor for sensors operating in harsh environments. The fundamental stacking orders of different SiC polytypes with common growth methods and conditions are introduced, with a focus on cubic silicon carbide (3C-SiC) and hexagonal silicon carbide (e.g. 4H-SiC and 6H-SiC). This chapter also introduces the thermoelectrical effect in SiC with respect to sensing properties at high temperatures. The importance of SiC materials with a wide range of applications in harsh environments will be mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.G. Senesky, B. Jamshidi, K.B. Cheng, A.P. Pisano, Harsh environment silicon carbide sensors for health and performance monitoring of aerospace systems: a review. IEEE Sens. J. 9, 1472–1478 (2009)

    Article  CAS  Google Scholar 

  2. J.A. Erkoyuncu, R. Roy, E. Shehab, P. Wardle, Uncertainty challenges in service cost estimation for product-service systems in the aerospace and defence industries, in Proceedings of the 19th CIRP Design Conference—Competitive Design (2009)

    Google Scholar 

  3. T.Q. Trung, N.E. Lee, Flexible and stretchable physical sensor integrated platforms for wearable human‐activity monitoring and personal healthcare. Advanced Materials (2016)

    Google Scholar 

  4. H. Sohn, C.R. Farrar, F.M. Hemez, D.D. Shunk, D.W. Stinemates, B.R. Nadler et al., A Review of Structural Health Monitoring Literature: 1996–2001 (Los Alamos National Laboratory, USA, 2003)

    Google Scholar 

  5. V. Balakrishnan, H.-P. Phan, T. Dinh, D.V. Dao, N.-T. Nguyen, Thermal flow sensors for harsh environments. Sensors 17, 2061 (2017)

    Article  Google Scholar 

  6. Y. Wang, Y. Jia, Q. Chen, Y. Wang, A passive wireless temperature sensor for harsh environment applications. Sensors 8, 7982–7995 (2008)

    Article  Google Scholar 

  7. H. Kairm, D. Delfin, M.A.I. Shuvo, L.A. Chavez, C.R. Garcia, J.H. Barton et al., Concept and model of a metamaterial-based passive wireless temperature sensor for harsh environment applications. IEEE Sens. J. 15, 1445–1452 (2015)

    Article  Google Scholar 

  8. L. Chen, M. Mehregany, A silicon carbide capacitive pressure sensor for high temperature and harsh environment applications, in Solid-State Sensors, Actuators and Microsystems Conference, 2007. TRANSDUCERS 2007. International (2007), pp. 2597–2600

    Google Scholar 

  9. K.S. Szajda, C.G. Sodini, H.F. Bowman, A low noise, high resolution silicon temperature sensor. IEEE J. Solid-State Circuits 31, 1308–1313 (1996)

    Article  Google Scholar 

  10. R.G. Azevedo, D.G. Jones, A.V. Jog, B. Jamshidi, D.R. Myers, L. Chen et al., A SiC MEMS resonant strain sensor for harsh environment applications. IEEE Sens. J. 7, 568–576 (2007)

    Article  CAS  Google Scholar 

  11. M.E. Levinshtein, S.L. Rumyantsev, M.S. Shur, Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe (Wiley, London, 2001)

    Google Scholar 

  12. R.F. Davis, Thin films and devices of diamond, silicon carbide and gallium nitride. Phys. B 185, 1–15 (1993)

    Article  CAS  Google Scholar 

  13. J. Casady, R.W. Johnson, Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review. Solid-State Electron 39, 1409–1422 (1996)

    Article  Google Scholar 

  14. M. Mehregany, C.A. Zorman, N. Rajan, C.H. Wu, Silicon carbide MEMS for harsh environments. Proc. IEEE 86, 1594–1609 (1998)

    Article  CAS  Google Scholar 

  15. X. She, A.Q. Huang, Ó. Lucía, B. Ozpineci, Review of silicon carbide power devices and their applications. IEEE Trans. Ind. Electron. 64, 8193–8205 (2017)

    Article  Google Scholar 

  16. L. Wang, A. Iacopi, S. Dimitrijev, G. Walker, A. Fernandes, L. Hold et al., Misorientation dependent epilayer tilting and stress distribution in heteroepitaxially grown silicon carbide on silicon (111) substrate. Thin Solid Films 564, 39–44 (2014)

    Article  CAS  Google Scholar 

  17. G.L. Harris, Properties of silicon carbide (IET, 1995)

    Google Scholar 

  18. D. Feldman, J.H. Parker Jr., W. Choyke, L. Patrick, Phonon dispersion curves by raman scattering in SiC, Polytypes 3 C, 4 H, 6 H, 1 5 R, and 2 1 R. Phys. Rev. 173, 787 (1968)

    Article  CAS  Google Scholar 

  19. G.N. Morscher, A.L. Gyekenyesi, The velocity and attenuation of acoustic emission waves in SiC/SiC composites loaded in tension. Compos. Sci. Technol. 62, 1171–1180 (2002)

    Article  CAS  Google Scholar 

  20. K.N. Lee, R.A. Miller, Oxidation behavior of muilite-coated SiC and SiC/SiC composites under thermal cycling between room temperature and 1200°–1400 °C. J. Am. Ceram. Soc. 79, 620–626 (1996)

    Article  CAS  Google Scholar 

  21. L. Shi, C. Sun, P. Gao, F. Zhou, W. Liu, Mechanical properties and wear and corrosion resistance of electrodeposited Ni–Co/SiC nanocomposite coating. Appl. Surf. Sci. 252, 3591–3599 (2006)

    Article  CAS  Google Scholar 

  22. D. Barrett, R. Campbell, Electron mobility measurements in SiC polytypes. J. Appl. Phys. 38, 53–55 (1967)

    Article  CAS  Google Scholar 

  23. M. Mehregany, C.A. Zorman, SiC MEMS: opportunities and challenges for applications in harsh environments. Thin Solid Films 355, 518–524 (1999)

    Article  Google Scholar 

  24. H. Mukaida, H. Okumura, J. Lee, H. Daimon, E. Sakuma, S. Misawa et al., Raman scattering of SiC: estimation of the internal stress in 3C-SiC on Si. J. Appl. Phys. 62, 254–257 (1987)

    Article  CAS  Google Scholar 

  25. L. Wang, S. Dimitrijev, J. Han, A. Iacopi, L. Hold, P. Tanner et al., Growth of 3C–SiC on 150-mm Si (100) substrates by alternating supply epitaxy at 1000 C. Thin Solid Films 519, 6443–6446 (2011)

    Article  CAS  Google Scholar 

  26. L. Wang, S. Dimitrijev, J. Han, P. Tanner, A. Iacopi, L. Hold, Demonstration of p-type 3C–SiC grown on 150 mm Si (1 0 0) substrates by atomic-layer epitaxy at 1000 °C. J. Cryst. Growth 329, 67–70 (2011)

    Article  CAS  Google Scholar 

  27. F. Roccaforte, F. La Via, V. Raineri, Ohmic contacts to SiC. Int. J. High Speed Electron. Syst. 15, 781–820 (2005)

    Article  CAS  Google Scholar 

  28. Z. Wang, W. Liu, C. Wang, Recent progress in ohmic contacts to silicon carbide for high-temperature applications. J. Electron. Mater. 45, 267–284 (2016)

    Article  CAS  Google Scholar 

  29. K. Nishi, A. Ikeda, D. Marui, H. Ikenoue, T. Asano, n-and p-Type Doping of 4H-SiC by Wet-Chemical Laser Processing, in Materials Science Forum (2014), pp. 645–648

    Article  CAS  Google Scholar 

  30. K. Eto, H. Suo, T. Kato, H. Okumura, Growth of P-type 4H–SiC single crystals by physical vapor transport using aluminum and nitrogen co-doping. J. Cryst. Growth 470, 154–158 (2017)

    Article  CAS  Google Scholar 

  31. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, 2006)

    Google Scholar 

  32. P. Wellmann, S. Bushevoy, R. Weingärtner, Evaluation of n-type doping of 4H-SiC and n-/p-type doping of 6H-SiC using absorption measurements. Mater. Sci. Eng., B 80, 352–356 (2001)

    Article  Google Scholar 

  33. A. Kovalevskii, A. Dolbik, S. Voitekh, Effect of doping on the temperature coefficient of resistance of polysilicon films. Russ. Microlectron. 36, 153–158 (2007)

    Article  CAS  Google Scholar 

  34. S. Rao, G. Pangallo, F.G. Della Corte, 4H-SiC pin diode as highly linear temperature sensor. IEEE Trans. Electron Devices 63, 414–418 (2016)

    Article  CAS  Google Scholar 

  35. S. Rao, G. Pangallo, F. Pezzimenti, F.G. Della Corte, High-performance temperature sensor based on 4H-SiC schottky diodes. IEEE Electron Device Lett. 36, 720–722 (2015)

    Article  CAS  Google Scholar 

  36. S.B. Hou, P.E. Hellström, C.M. Zetterling, M. Östling, 4H-SiC PIN diode as high temperature multifunction sensor, in Materials Science Forum (2017), pp. 630–633

    Article  Google Scholar 

  37. S. Zhao, G. Lioliou, A. Barnett, Temperature dependence of commercial 4H-SiC UV Schottky photodiodes for X-ray detection and spectroscopy. Nucl. Instrum. Methods Phys. Res., Sect. A 859, 76–82 (2017)

    Article  CAS  Google Scholar 

  38. S. Fukuda, T. Kato, Y. Okamoto, H. Nakatsugawa, H. Kitagawa, S. Yamaguchi, Thermoelectric properties of single-crystalline SiC and dense sintered SiC for self-cooling devices. Jpn. J. Appl. Phys. 50, 031301 (2011)

    Article  Google Scholar 

  39. T. Dinh, H.-P. Phan, A. Qamar, P. Woodfield, N.-T. Nguyen, D.V. Dao, Thermoresistive effect for advanced thermal sensors: fundamentals, design considerations, and applications. J. Microelectromech. Syst. (2017)

    Google Scholar 

  40. J.W. Gardner, V.K. Varadan, O.O. Awadelkarim, Microsensors, MEMS, and Smart Devices, vol. 1 (Wiley Online Library, 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toan Dinh .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dinh, T., Nguyen, NT., Dao, D.V. (2018). Introduction to SiC and Thermoelectrical Properties. In: Thermoelectrical Effect in SiC for High-Temperature MEMS Sensors. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-2571-7_1

Download citation

Publish with us

Policies and ethics