Skip to main content

Metabolism and Toxicity of Organic Arsenic Compounds in Marine Organisms

  • Chapter
  • First Online:
Book cover Arsenic Contamination in Asia

Abstract

The ingestion of finfish has been recommended as a preventive measure for lifestyle-related diseases, and marine algae are gaining attention as a source of dietary fiber and essential nutrients, including minerals. However, given the recognition of a potential for high arsenic levels in marine organisms, these dietary recommendations may have neglected the necessity of verifying the absence of health risk from the ingestion of arsenic in marine-derived foods. Under such circumstances, it is clear that the toxicological effects of both arsenosugars and arsenolipids, common in marine-derived materials, are important among organic arsenic (As) compounds. This includes the recent identification of thio-dimethylarsinic acid (thio-DMA) as an arsenosugar metabolite and the demonstration that it is more cytotoxic than even inorganic arsenic (III) which is considered highly toxic. Moreover, multiple studies have found arsenic-containing hydrocarbons (AsHCs), a group of arsenolipids produced by marine organisms, are strong neurotoxins. Similar to thio-DMA, AsHCs are equally or more toxic than inorganic arsenic. Thus, future efforts need to elucidate the biological and toxic effects of organic As compounds by evaluating next-generation effects and brain dysfunction caused by genotoxicity. Although arsenobetaine (AB) is the organic As compound with the highest probability of ingestion, the conclusion that AB is a nontoxic arsenical seems probable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IARC (International Agency for Research on Cancer). IARC monographs on the evaluation of the carcinogenic risks to humans, suppl. 7, overall evaluations of carcinogenicity: an updating of IARC monographs volumes 1 to 42, arsenic and arsenic compounds, 100–106. Lyon: IARC; 1987.

    Google Scholar 

  2. Lunde G. Analysis of arsenic in marine oils by neutron activation. Evidence of arseno organic compounds. J Am Oil Chem Soc. 1968;45(5):331–2. https://doi.org/10.1007/BF02667103.

    Article  CAS  PubMed  Google Scholar 

  3. Edmonds JS, Francesconi KA, Cannon JR, Raston CL, Skelton BW, White AH. Isolation, crystal structure and synthesis of arsenobetaine, the arsenical constituent of the western rock lobster Panulirus longipes cygnus George. Tetrahedron Lett. 1977;18(18):1543–6.

    Article  Google Scholar 

  4. Edmonds JS, Francesconi KA. Arseno-sugars from brown kelp (Ecklonia radiata) as intermediates in cycling of arsenic in a marine ecosystem. Nature. 1981;289:602–4.

    Article  CAS  Google Scholar 

  5. FAO/WHO. Report of the joint FAO/WHO expert consultation on the risks and benefits of fish consumption. Geneva: WHO, Food and Agriculture Organization of the United Nations; 2011. p. 50.

    Google Scholar 

  6. Wrench J, Fowler SW, Unlu MY. Arsenic metabolism in a marine food chain. Mar Pollut Bull. 1979;10(1):18–20.

    Article  CAS  Google Scholar 

  7. Freeman HC, Uthe JF, Fleming RB, Odense PH, Ackman RG, Landry G, Musial C. Clearance of arsenic ingested by man from arsenic contaminated fish. Bull Environ Contam Toxicol. 1979;22(1–2):224–9.

    Article  CAS  PubMed  Google Scholar 

  8. Tam GK, Charbonneau SM, Bryce F, Sandi E. Excretion of a single oral dose of fish-arsenic in man. Bull Environ Contam Toxicol. 1982;28(6):669–73.

    Article  CAS  PubMed  Google Scholar 

  9. Brown RM, Newton D, Pickford CJ, Sherlock JC. Human metabolism of arsenobetaine ingested with fish. Hum Exp Toxicol. 1990;9(1):41–6.

    Article  CAS  PubMed  Google Scholar 

  10. Larsen EH, Pritzl G, Hansen SH. Arsenic speciation in seafood samples with emphasis on minor constituents: an investigation using high-performance liquid chromatography with detection by inductively coupled plasma mass spectrometry. J Anal At Spectrom. 1993;8:1075–84.

    Article  CAS  Google Scholar 

  11. Velez D, Ybanez N, Montoro R. Percentages of total arsenic represented by arsenobetaine levels of manufactured seafood products. J Agric Food Chem. 1995;43(5):1289–94.

    Article  CAS  Google Scholar 

  12. Velez D, Ybanez N, Montoro R. Monomethylarsonic and dimethylarsinic acid contents in seafood products. J Agric Food Chem. 1996;44(3):859–64.

    Article  CAS  Google Scholar 

  13. Laparra JM, Velez D, Barbera R, Montoro R, Farre R. Bioaccessibility and transport by Caco-2 cells of organoarsenical species present in seafood. J Agric Food Chem. 2007;55:5892–7.

    Article  CAS  PubMed  Google Scholar 

  14. Cheyns K, Waegeneers N, Wiele TV, Ruttens A. Arsenic release from foodstuffs upon food preparation. J Agric Food Chem. 2017;65:2443–53.

    Article  CAS  PubMed  Google Scholar 

  15. Molin M, Ulven SM, Dahl L, Telle-Hansen VH, Holck M, Skjegstad G, et al. Humans seem to produce arsenobetaine and dimethylarsinate after a bolus dose of seafood. Environ Res. 2012;112:28–39.

    Article  CAS  PubMed  Google Scholar 

  16. Taleshi MS, Edmonds JS, Goessler W, Ruiz-Chancho MJ, Raber G, Jenson KB, Francesconi KA. Arsenic-containing lipids are natural constituents of sashimi tuna. Environ Sci Technol. 2010;44(4):1478–83. https://doi.org/10.1021/ES9030358.

    Article  CAS  PubMed  Google Scholar 

  17. Shibata Y, Morita M. Characterization of organic arsenic compounds in bivalves. Appl Organomet Chem. 1992;6:343–9.

    Article  CAS  Google Scholar 

  18. Lai VW, Sun Y, Ting E, Cullen WR, Reimer KJ. Arsenic speciation in human urine: are we all the same? Toxicol Appl Pharmacol. 2004;198(3):297–306.

    Article  CAS  PubMed  Google Scholar 

  19. Yamauchi H, Yamamura Y. Metabolism and excretion of orally ingested trimethylarsenic in man. Bull Environ Contam Toxicol. 1984;32(6):682–7.

    Article  CAS  PubMed  Google Scholar 

  20. Francesconi KA, Edmonds JS. The identification of arsenobetaine as the sole water-soluble arsenic constituent of the tail muscle of the western king prawn Penaeus latisulcatus. Comp Biochem Physiol C. 1987;87(2):345–7.

    Article  CAS  PubMed  Google Scholar 

  21. Le XC, Cullen WR, Reimer KJ. Human urinary arsenic excretion after one-time ingestion of seaweed, crab, and shrimp. Clin Chem. 1994;40(4):617–24.

    CAS  PubMed  Google Scholar 

  22. Shibata Y, Sekiguchi M, Otsuki A, Morita M. Arsenic compounds in zoo- and phytoplankton of marine origin. Appl Organomet Chem. 1996;10:713–9.

    Article  CAS  Google Scholar 

  23. Caumette G, Koch I, Reimer KJ. Arsenobetaine formation in plankton: a review of studies at the base of the aquatic food chain. J Environ Monit. 2012;14(11):2841–53.

    Article  CAS  PubMed  Google Scholar 

  24. Clowes LA, Francesconi KA. Uptake and elimination of arsenobetaine by the mussel Mytilus edulis is related to salinity. Comp Biochem Physiol C Toxicol Pharmacol. 2004;137(1):35–42. https://doi.org/10.1016/j.cca.2003.11.003.

    Article  CAS  PubMed  Google Scholar 

  25. Amlund H, Berntssen MH. Arsenobetaine in Atlantic salmon (Salmo salar L.): influence of seawater adaptation. Comp Biochem Physiol C Toxicol Pharmacol. 2004;138(4):507–14. https://doi.org/10.1016/j.cca.2004.08.010.

    Article  CAS  PubMed  Google Scholar 

  26. Edmonds JS, Francesconi KA. Arsenic-containing ribofuranosides: isolation from brown kelp Ecklonia radiata and nuclear magnetic resonance spectra. J Chem Soc Perkin Trans. 1983;1:2375–82.

    Article  Google Scholar 

  27. Francesconi KA, Edmonds JS. Arsenic and marine organisms. Adv Inorg Chem. 1996;44:147–89.

    Article  Google Scholar 

  28. Tukai R, Maher WA, McNaught IJ, Ellwood MJ, Coleman M. Occurrence and chemical form of arsenic in marine macroalgae from the east coast of Australia. Mar Freshw Res. 2002;53(6):971–80.

    Article  CAS  Google Scholar 

  29. Feldmann J, Krupp EM. Critical review or scientific opinion paper: arsenosugars-a class of benign arsenic species or justification for developing partly speciated arsenic fractionation in foodstuffs? Anal Bioanal Chem. 2011;399(5):1735–41.

    Article  CAS  PubMed  Google Scholar 

  30. Edmonds JS, Shibata Y, Francesconi KA, Rippingale RJ, Morita M. Arsenic transformations in short marine food chains studied by HPLC-ICP MS. Appl Organomet Chem. 1997;11(4):281–7.

    Article  CAS  Google Scholar 

  31. Shibata Y, Jin K, Morita M. Arsenic compounds in the edible red alga, Porphyra tenera, and in nori and yakinori, food items produced from red algae. Appl Organometal Chem. 1990;4:255–60. https://doi.org/10.1002/aoc.590040313.

    Article  CAS  Google Scholar 

  32. Taylor V, Goodale B, Raab A, Schwerdtle T, Reimer K, Conklin S, Karagas MR, Francesconi KA. Human exposure to organic arsenic species from seafood. Sci Total Environ. 2017;580:266–82.

    Article  CAS  PubMed  Google Scholar 

  33. Taleshi MS, Jensen KB, Raber G, Edmonds JS, Gunnlaugsdottir H, Francesconi KA. Arsenic-containing hydrocarbons: natural compounds in oil from the fish capelin, Mallotus villosus. Chem Commun (Camb). 2008;21(39):4706–7.

    Article  CAS  Google Scholar 

  34. Arroyo-Abad U, Lischka S, Piechotta C, Mattusch J, Reemtsma T. Determination and identification of hydrophilic and hydrophobic arsenic species in methanol extract of fresh cod liver by RP-HPLC with simultaneous ICP-MS and ESI-Q-TOF-MS detection. Food Chem. 2013;141(3):3093–102.

    Article  CAS  PubMed  Google Scholar 

  35. Garcia-Salgado S, Raber G, Raml R, Manges C, Francesconi KA. Arsenosugar phospholipids and arsenic hydrocarbons in two species of brown macroalgae. Environ Chem. 2012;9:63–6.

    Article  CAS  Google Scholar 

  36. Yu X, Xiong C, Jensen KB, Glabonjat RA, Stiboller M, Raber G, Francesconi KA. Mono-acyl arsenosugar phospholipids in the edible brown alga Kombu (Saccharina japonica). Food Chem. 2018;240:817–21. https://doi.org/10.1016/j.foodchem.2017.08.024.

    Article  CAS  PubMed  Google Scholar 

  37. Rumpler A, Edmonds JS, Katsu M, Jensen KB, Goessler W, Raber G, Gunnlaugsdottir H, Francesconi KA. Arsenic-containing long-chain fatty acids in cod-liver oil: a result of biosynthetic infidelity? Angew Chem Int Ed. 2008;47(14):2665–7.

    Article  CAS  Google Scholar 

  38. Lischka S, Arroyo-Abad U, Mattusch J, Kuhn A, Piechotta C. The high diversity of arsenolipids in herring fillet (Clupea harengus). Talanta. 2013;110:144–52.

    Article  CAS  PubMed  Google Scholar 

  39. Morita M, Shibata Y. Isolation and identification of arseno-lipid from a brown alga Undaria pinnatifida (Wakame). Chemosphere. 1988;17(6):1147–52.

    Article  CAS  Google Scholar 

  40. Viczek SA, Jensen KB, Francesconi KA. Arsenic-containing phosphatidylcholines: a new group of arsenolipids discovered in Herring Caviar. Angew Chem Int Ed. 2016;55(17):5259–62.

    Article  CAS  Google Scholar 

  41. Stiboller M, Raber G, Lenters V, Gjengedal ELF, Eggesbø M, Francesconi KA. Arsenolipids detected in the milk of nursing mothers. Environ Sci Technol Lett. 2017;4(7):273–9. https://doi.org/10.1021/acs.estlett.7b00181.

    Article  CAS  Google Scholar 

  42. Kaise T, Watanabe S, Itoh K. The acute toxicity of arsenobetaine. Chemosphere. 1985;14(9):1327–32.

    Article  CAS  Google Scholar 

  43. Kaise T, Horiguchi Y, Fukui S, Shiomi K, Chino M, Kikuchi T. Acute toxicity and metabolism of arsenocholine in mice. Appl Organomet Chem. 1992;6(4):369–73. https://doi.org/10.1002/aoc.590060410.

    Article  CAS  Google Scholar 

  44. Kaise T, Fukui S. The chemical form and acute toxicity of arsenic compounds in marine organisms. Appl Organometal Chem. 1992;6:155–60. https://doi.org/10.1002/aoc.590060208.

    Article  CAS  Google Scholar 

  45. Shiomi K, Horiguchi Y, Kaise T. Acute toxicity and rapid excretion in urine of tetramethylarsonium salts found in some marine animals. Appl Organometal Chem. 1988;2:385–9. https://doi.org/10.1002/aoc.590020417.

    Article  CAS  Google Scholar 

  46. Crecelius EA. Changes in the chemical speciation of arsenic following ingestion by man. Environ Health Perspect. 1977;19:147–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vahter M, Marafante E, Dencker L. Metabolism of arsenobetaine in mice, rats and rabbits. Sci Total Environ. 1983;30:197–211.

    Article  CAS  PubMed  Google Scholar 

  48. Yamauchi H, Kaise T, Yamamura Y. Metabolism and excretion of orally administered arsenobetaine in the hamster. Bull Environ Contam Toxicol. 1986;36(3):350–5.

    Article  CAS  PubMed  Google Scholar 

  49. Francesconi KA, Tanggaar R, McKenzie CJ, Goessler W. Arsenic metabolites in human urine after ingestion of an arsenosugar. Clin Chem. 2002;48(1):92–101.

    CAS  PubMed  Google Scholar 

  50. Raml R, Goessler W, Traar P, Ochi T, Francesconi KA. Novel thioarsenic metabolites in human urine after ingestion of an arsenosugar, 2′, 3′-dihydroxypropyl 5-deoxy-5-dimethylarsinoyl-beta-D-riboside. Chem Res Toxicol. 2005;18(9):1444–50.

    Article  CAS  PubMed  Google Scholar 

  51. Ma M, Le XC. Effect of arsenosugar ingestion on urinary arsenic speciation. Clin Chem. 1998;44(3):539–50.

    CAS  PubMed  Google Scholar 

  52. Wei C, Li W, Zhang C, Van Hulle M, Cornelis R, Zhang X. Safety evaluation of organoarsenical species in edible Porphyra from the China Sea. J Agric Food Chem. 2003;51(17):5176–82.

    Article  CAS  PubMed  Google Scholar 

  53. Van Hulle M, Zhang C, Schotte B, Mees L, Vanhaecke F, Vanholder R, Zhang XR, Cornelis R. Identification of some arsenic species in human urine and blood after ingestion of Chinese seaweed Laminaria. J Anal At Spectrom. 2004;19:58–64. https://doi.org/10.1039/B307457a.

    Article  Google Scholar 

  54. Choi BS, Choi SJ, Kim DW, Huang M, Kim NY, Park KS, Kim CY, Lee HM, Yum YN, Han ES, Kang TS, Yu IJ, Park JD. Effects of repeated seafood consumption on urinary excretion of arsenic species by volunteers. Arch Environ Contam Toxicol. 2010;58:222–9. https://doi.org/10.1007/s00244-009-9333-8.

    Article  CAS  PubMed  Google Scholar 

  55. Hata A, Yamanaka K, Endo G, Yamano Y, Haba R, Fujitani N, Endo Y. Arsenic metabolites in humans after ingestion of wakame seaweed. E3S Web Conf. 2013;1:26006. https://doi.org/10.1051/e3sconf/20130126006.

    Article  CAS  Google Scholar 

  56. Taylor VF, Li Z, Sayarath V, Palys TJ, Morse KR, Scholz-Bright RA, Karagas MR. Distinct arsenic metabolites following seaweed consumption in humans. Sci Rep. 2017;7:3920. https://doi.org/10.1038/s41598-017-03883-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Feldmann J, John K, Pengprecha P. Arsenic metabolism in seaweed-eating sheep from Northern Scotland. Fresenius J Anal Chem. 2000;368(1):116–21.

    Article  CAS  PubMed  Google Scholar 

  58. Hansen HR, Raab A, Francesconi KA, Feldmann I. Metabolism of arsenic by sheep chronically exposed to arsenosugars as a normal part of their diet. 1. Quantitative intake, uptake, and excretion. Environ Sci Technol. 2003;37(5):845–51.

    Article  CAS  PubMed  Google Scholar 

  59. Leffers L, Wehe CA, Huwel S, Bartel M, Ebert F, Taleshi MS, et al. In vitro intestinal bioavailability of arsenosugar metabolites and presystemic metabolism of thiodimethylarsinic acid in Caco-2 cells. Metallomics. 2013;5(8):1031–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature. 2010;464:908–12.

    Article  CAS  PubMed  Google Scholar 

  61. Leffers L, Ebert F, Taleshi MS, Francesconi KA, Schwerdtle T. In vitro toxicological characterization of two arsenosugars and their metabolites. Mol Nutr Food Res. 2013;57(7):1270–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ebert F, Meyer S, Leffers L, Raber G, Francesconi KA, Schwerdtle T. Toxicological characterisation of a thio-arsenosugar-glycerol in human cells. J Trace Elem Med Biol. 2016;38:150–6.

    Article  CAS  PubMed  Google Scholar 

  63. Sakurai T, Kaise T, Ochi T, Saitoh T, Matsubara C. Study of in vitro cytotoxicity of a water soluble organic arsenic compound, arsenosugar, in seaweed. Toxicology. 1997;122(3):205–12.

    Article  CAS  PubMed  Google Scholar 

  64. Ochi T, Kita K, Suzuki T, Rumpler A, Goessler W, Francesconi KA. Cytotoxic, genotoxic and cell-cycle disruptive effects of thiodimethylarsinate in cultured human cells and the role of glutathione. Toxicol Appl Pharmacol. 2008;228(1):59–67. https://doi.org/10.1016/j.taap.2007.11.023.

    Article  CAS  PubMed  Google Scholar 

  65. Bartel M, Ebert F, Leffers L, Karst U, Schwerdtle T. Toxicological characterization of the inorganic and organic arsenic metabolite thio-DMA in cultured human lung cells. J Toxicol. 2011;2011:373141. https://doi.org/10.1155/2011/373141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ebert F, Leffers L, Weber T, Berndt S, Mangerich A, Beneke S, et al. Toxicological properties of the thiolated inorganic arsenic and arsenosugar metabolite thio-dimethylarsinic acid in human bladder cells. J Trace Elem Med Biol. 2014;28(2):138–46.

    Article  CAS  PubMed  Google Scholar 

  67. Bin Sayeed MS, Ratan M, Hossen F, Hassan F, Faisal M, Kadir MF. Arsenosugar induced blood and brain oxidative stress, DNA damage and neurobehavioral impairments. Neurochem Res. 2013;38(2):405–12.

    Article  CAS  PubMed  Google Scholar 

  68. Schmeisser E, Goessler W, Francesconi KA. Human metabolism of arsenolipids present in cod liver. Anal Bioanal Chem. 2006;385(2):367–76.

    Article  CAS  PubMed  Google Scholar 

  69. Fukuda S, Terasawa M, Shiomi K. Phosphatidylarsenocholine, one of the major arsenolipids in marine organisms: synthesis and metabolism in mice. Food Chem Toxicol. 2011;49(7):1598–603. https://doi.org/10.1016/j.fct.2011.03.053.

    Article  CAS  PubMed  Google Scholar 

  70. Meyer S, Raber G, Ebert F, Taleshi MS, Francesconi KA, Schwerdtle T. Arsenic-containing hydrocarbons and arsenic-containing fatty acids: transfer across and presystemic metabolism in the Caco-2 intestinal barrier model. Mol Nutr Food Res. 2015;59(10):2044–56.

    Article  CAS  PubMed  Google Scholar 

  71. Meyer S, Matissek M, Muller SM, Taleshi MS, Ebert F, Francesconi KA, Schwerdtle T. In vitro toxicological characterisation of three arsenic-containing hydrocarbons. Metallomics. 2014;6(5):1023–33.

    Article  CAS  PubMed  Google Scholar 

  72. Meyer S, Schulz J, Jeibmann A, Taleshi MS, Ebert F, Francesconi KA, Schwerdtle T. Arsenic-containing hydrocarbons are toxic in the in vivo model Drosophila edmelanogaster. Metallomics. 2014;6(11):2010–4.

    Article  CAS  PubMed  Google Scholar 

  73. Niehoff AC, Schulz J, Soltwisch J, Meyer S, Kettling H, Sperling M, Jeibmann A, Dreisewerd K, Francesconi KA, Schwerdtle T, Karst U. Imaging by elemental and molecular mass spectrometry reveals the uptake of an arsenolipid in the brain of Drosophila melanogaster. Anal Chem. 2016;88(10):5258–63.

    Article  CAS  PubMed  Google Scholar 

  74. Müller SM, Ebert F, Raber G, Meyer S, Bornhorst J, Hüwel S, Galla HJ, Francesconi KA, Schwerdtle T. Effects of arsenolipids on in vitro blood-brain barrier model. Arch Toxicol. 2018;92(2):823–32. https://doi.org/10.1007/s00204-017-2085-8.

    Article  CAS  PubMed  Google Scholar 

  75. Witt B, Ebert F, Meyer S, Francesconi KA, Schwerdtle T. Assessing neurodevelopmental effects of arsenolipids in pre-differentiated human neurons. Mol Nutr Food Res. 2017;61:1700199. https://doi.org/10.1002/mnfr.201700199.

    Article  CAS  Google Scholar 

  76. Witt B, Meyer S, Ebert F, Francesconi KA, Schwerdtle T. Toxicity of two classes of arsenolipids and their water-soluble metabolites in human differentiated neurons. Arch Toxicol. 2017;91:3121–34.

    Article  CAS  PubMed  Google Scholar 

  77. Witt B, Bornhorst J, Mitze H, Ebert F, Meyer S, Francesconi KA, Schwerdtle T. Arsenolipids exert less toxicity in a human neuron astrocyte co-culture as compared to the respective monocultures. Metallomics. 2017;9:442–6.

    Article  CAS  PubMed  Google Scholar 

  78. Dahl L, Molin M, Amlund H, Meltzer HM, Julshamn K, Alexander J, Sloth JJ. Stability of arsenic compounds in seafood samples during processing and storage by freezing. Food Chem. 2010;123(3):720–7.

    Article  CAS  Google Scholar 

  79. Norin H, Christakopoulos A, Sandström M, Ryhage R. Mass fragmentographic estimation of trimethylarsine oxide in aquatic organisms. Chemosphere. 1985;14:313–23. https://doi.org/10.1016/0045-6535(85)90059-1.

    Article  CAS  Google Scholar 

  80. Kirby J, Maher W. Tissue accumulation and distribution of arsenic compounds in three marine fish species: relationship to trophic position. Appl Organomet Chem. 2002;16(2):108–15.

    Article  CAS  Google Scholar 

  81. Shiomi K, Kakehashi Y, Yamanaka H, Kikuchi T. Identification of arsenobetaine and a tetramethylarsonium salt in the clam Meretrix lusoria. Appl Organomet Chem. 1987;1(2):177–83.

    Article  CAS  Google Scholar 

  82. Krishnakumar PK, Qurbana MA, Stiboller M, Nachman KE, Joydas TV, Manikandan KP, Mushir SA, Francesconi KA. Arsenic and arsenic species in shellfish and finfish from the western Arabian Gulf and consumer health risk assessment. Sci Total Environ. 2016;566–567:1235–44. https://doi.org/10.1016/j.scitotenv.2016.05.180.

    Article  CAS  PubMed  Google Scholar 

  83. Marafante E, Vahter M, Dencker L. Metabolism of arsenocholine in mice, rats and rabbits. Sci Total Environ. 1984;34(3):223–40. https://doi.org/10.1016/0048-9697(84)90065-2.

    Article  CAS  PubMed  Google Scholar 

  84. Yamauchi H, Takahashi K, Yamamura Y, Kaise T. Metabolism and excretion of orally and intraperitoneally administered trimethylarsine oxide in the hamster. Toxicol Environ Chem. 1989;22:69–76. https://doi.org/10.1080/02772248909357425.

    Article  CAS  Google Scholar 

  85. Yamauchi H, Yamamura Y. Metabolism and excretion of orally administered dimethylarsinic acid in the hamster. Toxicol Appl Pharmacol. 1984;74(1):134–40. https://doi.org/10.1016/0041-008X(84)90279-5.

    Article  CAS  PubMed  Google Scholar 

  86. Marafante E, Vahter M, Norin H, Envall J, Sandström M, Christakopoulos A, Ryhage R. Biotransformation of dimethylarsinic acid in mouse, hamster and man. J Appl Toxicol. 1987;7:111–7. https://doi.org/10.1002/jat.2550070207.

    Article  CAS  PubMed  Google Scholar 

  87. Almela C, Laparra JM, Velez D, Barbera R, Farre R, Montoro R. Arsenosugars in raw and cooked edible seaweed: characterization and bioaccessibility. J Agric Food Chem. 2005;53(18):7344–51.

    Article  CAS  PubMed  Google Scholar 

  88. Devesa V, Martinez A, Suner MA, Velez D, Almela C, Montoro R. Effect of cooking temperatures on chemical changes in species of organic arsenic in seafood. J Agric Food Chem. 2001;49(5):2272–6.

    Article  CAS  PubMed  Google Scholar 

  89. Gale CR, O’Callaghan FJ, Bredow M, Martyn CN. The influence of head growth in fetal life, infancy, and childhood on intelligence at the ages of 4 and 8 years. Pediatrics. 2006;118(4):1486–92. https://doi.org/10.1542/peds.2005-2629.

    Article  PubMed  Google Scholar 

  90. Rahman A, Vahter M, Smith AH, Nermell B, Yunus M, Arifeen SE, Persson LA, Ekstrom EC. Arsenic exposure during pregnancy and size at birth: a prospective cohort study in Bangladesh. Am J Epidemiol. 2009;169(3):304–12. https://doi.org/10.1093/aje/kwn332.

    Article  PubMed  Google Scholar 

  91. Tsai SY, Chou HY, The HW, Chen CM, Chen CJ. The effects of chronic arsenic exposure from drinking water on the neurobehavioral development in adolescence. Neurotoxicology. 2003;24(4–5):747–53. https://doi.org/10.1016/S0161-813X(03)00029-9.

    Article  CAS  PubMed  Google Scholar 

  92. Hamadani JD, Tofail F, Nermell B, Gardner R, Shiraji S, Bottai M, Arifeen SE, Huda SN, Vahter M. Critical windows of exposure for arsenicassociated impairment of cognitive function in pre-school girls and boys: a population-based cohort study. Int J Epidemiol. 2011;40(6):1593–604. https://doi.org/10.1093/ije/dyr176.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by JSPS KAKENHI Grant Numbers JP16K15382 to A.T. and JP17K15859 to Y.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cao, Y., Takata, A., Hitomi, T., Yamauchi, H. (2019). Metabolism and Toxicity of Organic Arsenic Compounds in Marine Organisms. In: Yamauchi, H., Sun, G. (eds) Arsenic Contamination in Asia. Current Topics in Environmental Health and Preventive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-13-2565-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2565-6_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2564-9

  • Online ISBN: 978-981-13-2565-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics