Skip to main content

UVR-Induced Skin Cancer

  • Chapter
  • First Online:
Book cover Skin Aging & Cancer

Abstract

From the epidemiological point of view, it is suggested that regular contacts to UVR irradiation since our childhood are the primary cause of skin tumors. UVR-induced ROS production caused DNA damage, immune suppression, and deactivation of tumor suppression genes or overactivation of proto-oncogene. These processes are interconnected with each other. Cyclobutane pyrimidine dimers (CPDs) and (6–4) photoproducts are main key products of DNA damage. Our body system has DNA repair mechanism which mainly involves nuclear excision repair and base excision repair pathways. Defect in repair pathways and continuous accumulation of mutation lead to photocarcinogenesis. DNA lesions are an important molecular mediator in initiation of immunosuppression which has a important role in the induction of UVR-mediated skin cancer. DNA damage induced by UVR involves inhabitation of cell cycle progress or apoptosis. P53 plays an important role in cell cycle; it arrests the G1 phage and removes DNA lesion. Mutations in P53 gene come into light as an early event in the progress of UV-induced skin cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Benjamin, C. L., & Ananthaswamy, H. N. (2007). p53 and the pathogenesis of skin cancer. Toxicology and Applied Pharmacology, 224(3), 241–248.

    Article  CAS  Google Scholar 

  • Birch-Machin, M. A., Russell, E. V., & Latimer, J. A. (2013). Mitochondrial DNA damage as a biomarker for ultraviolet radiation exposure and oxidative stress. British Journal of Dermatology, 169, 9–14.

    Article  CAS  Google Scholar 

  • Chaisiriwong, L., Wanitphakdeedecha, R., Sitthinamsuwan, P., Sampattavanich, S., Chatsiricharoenkul, S., Manuskiatti, W., & Panich, U. (2016). A case-control study of involvement of oxidative DNA damage and alteration of antioxidant defense system in patients with basal cell carcinoma: Modulation by tumor removal. Oxidative Medicine and Cellular Longevity, 2016, 5934024.

    Article  CAS  Google Scholar 

  • De Gruijl, F. R. (2008). UV-induced immunosuppression in the balance. Photochemistry and Photobiology, 84(1), 2–9.

    PubMed  Google Scholar 

  • de Laat, W. L., Jaspers, N. G., & Hoeijmakers, J. H. (1999). Molecular mechanism of nucleotide excision repair. Genes & Development, 13(7), 768–785.

    Article  Google Scholar 

  • Hanneman, K. K., Cooper, K. D., & Baron, E. D. (2006). Ultraviolet immunosuppression: mechanisms and consequences. Dermatologic Clinics, 24(1), 19–25.

    Article  CAS  Google Scholar 

  • Kripke, M. L., Cox, P. A., Alas, L. G., & Yarosh, D. B. (1992). Pyrimidine dimers in DNA initiate systemic immunosuppression in UV-irradiated mice. Proceedings of the National Academy of Sciences, 89(16), 7516–7520.

    Article  CAS  Google Scholar 

  • Kulms, D., Pöppelmann, B., Yarosh, D., Luger, T. A., Krutmann, J., & Schwarz, T. (1999). Nuclear and cell membrane effects contribute independently to the induction of apoptosis in human cells exposed to UVB radiation. Proceedings of the National Academy of Sciences, 96(14), 7974–7979.

    Article  CAS  Google Scholar 

  • Levine, A. J. (1997). p53, the cellular gatekeeper for growth and division. Cell, 88(3), 323–331.

    Article  CAS  Google Scholar 

  • Mueller, G., Saloga, J., Germann, T., Schuler, G., Knop, J., & Enk, A. H. (1995). IL-12 as mediator and adjuvant for the induction of contact sensitivity in vivo. The Journal of Immunology, 155(10), 4661–4668.

    CAS  Google Scholar 

  • Nakazawa, H., English, D., Randell, P. L., Nakazawa, K., Martel, N., Armstrong, B. K., & Yamasaki, H. (1994). UV and skin cancer: Specific p53 gene mutation in normal skin as a biologically relevant exposure measurement. Proceedings of the National Academy of Sciences, 91(1), 360–364.

    Article  CAS  Google Scholar 

  • Rochette, P. J., Therrien, J. P., Drouin, R., Perdiz, D., Bastien, N., Drobetsky, E. A., & Sage, E. (2003). UVA-induced cyclobutane pyrimidine dimers form predominantly at thymine–thymine dipyrimidines and correlate with the mutation spectrum in rodent cells. Nucleic Acids Research, 31(11), 2786–2794.

    Article  CAS  Google Scholar 

  • Schuch, A. P., Moreno, N. C., Schuch, N. J., Menck, C. F. M., & Garcia, C. C. M. (2017). Sunlight damage to cellular DNA: Focus on oxidatively generated lesions. Free Radical Biology and Medicine, 107, 110–124.

    Article  CAS  Google Scholar 

  • Schwarz, A., Ständer, S., Berneburg, M., Böhm, M., Kulms, D., van Steeg, H., Grosse-Heitmeyer, K., Krutmann, J., & Schwarz, T. (2002). Interleukin-12 suppresses ultraviolet radiation-induced apoptosis by inducing DNA repair. Nature Cell Biology, 4(1), 26.

    Article  CAS  Google Scholar 

  • Schwarz, A., Noordegraaf, M., Maeda, A., Torii, K., Clausen, B. E., & Schwarz, T. (2010). Langerhans cells are required for UVR-induced immunosuppression. Journal of Investigative Dermatology, 130(5), 1419–1427.

    Article  CAS  Google Scholar 

  • Setlow, R. B. (1982). DNA repair, aging, and cancer. National Cancer Institute Monograph, 60, 249–255.

    PubMed  CAS  Google Scholar 

  • Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012.

    Google Scholar 

  • Toews, G. B., Bergstresser, P. R., & Streilein, J. W. (1980). Epidermal Langerhans cell density determines whether contact hypersensitivity or unresponsiveness follows skin painting with DNFB. The Journal of Immunology, 124(1), 445–453.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, J. (2019). UVR-Induced Skin Cancer. In: Dwivedi, A., Agarwal, N., Ray, L., Tripathi, A. (eds) Skin Aging & Cancer. Springer, Singapore. https://doi.org/10.1007/978-981-13-2541-0_4

Download citation

Publish with us

Policies and ethics