Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 226 Accesses

Abstract

Piezoelectric devices such as ultrasonic motors, transformers, piezoelectric sensors, and actuators have been widely used in various industrial areas [1, 2]. Recently, interests in piezoelectric devices has increased considerably with the development of mobile devices. Pb(Zr1 − xTix)O3 (PZT)-based ceramics, thick films, and thin films have been generally used for these piezoelectric devices because of their excellent piezoelectric properties. However, since PZT-based materials contain more than 60 wt% PbO, which is toxic and evaporates during the synthesis process, they can pose serious environmental problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nagata H, Takenaka T (2013) Electron Commun Jpn 96:53–58

    Article  Google Scholar 

  2. Jaffe B (2012) Piezoelectric ceramics. Elsevier

    Google Scholar 

  3. Wada S, Yako K, Kakemoto H, Tsurumi T, Kiguchi T (2005) J Appl Phys 98:014109

    Article  Google Scholar 

  4. Nagata H, Yoshida M, Makiuchi Y, Takenaka T (2003) Jpn J Appl Phys 42:7401

    Article  CAS  Google Scholar 

  5. Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Nature 432:84–87

    Article  CAS  Google Scholar 

  6. Li J-F, Wang K, Zhu F-Y, Cheng L-Q, Yao F-Z, Green DJ (2013) J Am Ceram Soc 96:3677–3696

    Article  CAS  Google Scholar 

  7. Nakamura K, Tokiwa T, Kawamura Y (2002) J Appl Phys 91:9272

    Article  CAS  Google Scholar 

  8. Wada S, Seike A, Tsurumi T (2001) Jpn J Appl Phys 40:5690

    Article  CAS  Google Scholar 

  9. Kim D-H, Joung M-R, Seo I-T, Hur J, Kim J-H, Kim B-Y, Lee H-J, Nahm S, Damjanovic D (2014) J Am Ceram Soc 97:3897–3903

    Article  CAS  Google Scholar 

  10. Matthias BT, Remeika JP (1951) Phys Rev 82:727–729

    Article  CAS  Google Scholar 

  11. Peng L, Wu H, Kung A, Lai C (2009) Springer series in materials science

    Google Scholar 

  12. Dicken MJ, Sweatlock LA, Pacifici D, Lezec HJ, Bhattacharya K, Atwater HA (2008) Nano Lett 8:4048–4052

    Article  CAS  Google Scholar 

  13. Qin M, Yao K, Liang YC (2008) Appl Phys Lett 93:122904

    Article  Google Scholar 

  14. Guo R, You L, Zhou Y, Lim ZS, Zou X, Chen L, Ramesh R, Wang J (2013) Nat Commun 4:1990

    Article  Google Scholar 

  15. Rousseau A, Laur V, Guilloux-Viry M, Tanné G, Huret F, Députier S, Perrin A, Lalu F, Laurent P (2006) Thin Solid Films 515:2353–2360

    Article  CAS  Google Scholar 

  16. Peng WEI, Bouquet V, DÉPutier S, Simon Q, Guilloux-Viry M, Perrin A (2007) Integr Ferroelectr 93:126–132

    Article  CAS  Google Scholar 

  17. Thöny SS, Lehmann H, Günter P (1992) Appl Phys Lett 61:373–375

    Article  Google Scholar 

  18. Kakio S, Kurosawa H, Suzuki T, Nakagawa Y (2008) Jpn J Appl Phys 47:3802–3806

    Article  CAS  Google Scholar 

  19. Tyunina M, Yao LD, Chvostova D, Kocourek T, Jelinek M, Dejneka A, van Dijken S (2015) New J Phys 17:043048

    Article  Google Scholar 

  20. Lee G, Shin Y-H, Son JY, Brennecka GL (2012) J Am Ceram Soc 95:2773

    Article  CAS  Google Scholar 

  21. Yang R, Shen SY, Wang CB, Shen Q, Zhang LM (2008) Thin Solid Films 516:8559–8563

    Article  CAS  Google Scholar 

  22. Yang R, Shen SY, Wang CB, Shen Q, Gong YS, Zhang LM (2007) Mater Lett 61:2658–2661

    Article  CAS  Google Scholar 

  23. Weber IT, Rousseau A, Guilloux-Viry M, Bouquet V, Perrin A (2005) Solid State Sci 7:1317

    Article  CAS  Google Scholar 

  24. Fasquelle D, Rousseau A, Guilloux-Viry M, Députier S, Perrin A, Carru JC (2010) Thin Solid Films 518:3432–3438

    Article  CAS  Google Scholar 

  25. Murzina TV, Savinov SA, Ezhov AA, Aktsipetrov OA, Korsakov IE, Bolshakov IA, Kaul AR (2006) Appl Phys Lett 89:062907

    Article  Google Scholar 

  26. Romanov MV, Korsakov IE, Kaul AR, Stefanovich SY, Bolshakov IA, Wahl G (2004) Chem Vap Deposition 10:318–324

    Article  CAS  Google Scholar 

  27. Weber IT, Garel M, Bouquet V, Rousseau A, Guilloux-Viry M, Longo E, Perrin A (2005) Thin Solid Films 493:139–145

    Article  CAS  Google Scholar 

  28. Gopalan V, Raj R (1996) Appl Phys Lett 68:1323–1325

    Article  CAS  Google Scholar 

  29. Kakimoto K-I, Hibino T, Masuda I, Ohsato H (2005) Sci Technol Adv Mater 6:61–65

    Article  CAS  Google Scholar 

  30. Simmons JG (1968) Phys Rev 166:912

    Article  CAS  Google Scholar 

  31. Yeargan JR, Taylor HL (1968) J Appl Phys 39(12):5600

    Article  CAS  Google Scholar 

  32. Hwang CS, Lee BT, Kang CS, Kim JW, Lee KH, Cho HJ, Horii H, Kim WD, Lee SI, Roh YB, Lee MY (1998) J Appl Phys 83(7):3703

    Article  CAS  Google Scholar 

  33. Allers KH (2004) Microelectron Reliab 44:411

    Article  Google Scholar 

  34. Jeong DS, Hwang CS (2005) Phys Rev B 71:165327

    Article  Google Scholar 

  35. Xu F, Chu F, Trolier-McKinstry S (1999) J Appl Phys 86:588

    Article  CAS  Google Scholar 

  36. Burks AW, Goldstine HH, von Neumann J (1946) Inst Adv Study

    Google Scholar 

  37. Moore GE (1965) Electronics 38:114

    Google Scholar 

  38. Merritt R (2009) EE Times

    Google Scholar 

  39. Venkatesh G, Sampson J, Goulding N, Garcia S, Bryksin V, Lugo-Martinez J, Swanson S, Taylor MB (2010) ACM SIGARCH ISCA 38:205

    Article  Google Scholar 

  40. Esmaeilzadeh H, Blem E, Amant RS, Sankaralingam K, Burger D (2011) ACM SIGARCH ISCA 365

    Google Scholar 

  41. Ball P (2012) Nature 492:174

    Article  CAS  Google Scholar 

  42. Moore S (2008) IEEE Spectr 45:15

    Article  Google Scholar 

  43. Hasegawa T, Terabe K, Tsuruoka T, Aono M (2012) Adv Mater 24:252

    Article  CAS  Google Scholar 

  44. Mead C (1990) Proc IEEE 78:1629

    Article  Google Scholar 

  45. Prezioso M, Merrikh-Bayat F, Hoskins BD, Adam GC, Likharev KK, Strukov DB (2015) Nature 521:61

    Article  CAS  Google Scholar 

  46. Wulf WA, McKee SA (1995) Comput Archit News 23:20

    Article  Google Scholar 

  47. Rupp K (2015) 40 years of microprocessor trend data. http://www.karlrupp.net/2015/06/40-years-ofmicroprocessor-trend-data/. Visited on 01/07/2016

  48. Jo SH, Chang T, Ebong I, Bhadviya BB, Mazumder P, Lu W (2010) Nano Lett 10:1297

    Article  CAS  Google Scholar 

  49. Yu SM, Gao B, Fang Z, Yu HY, Kang JF, Wong HSP (2013) Adv Mater 25:1774

    Article  CAS  Google Scholar 

  50. Wang ZQ, Xu HY, Li XH, Yu H, Liu YC, Zhu XJ (2012) Adv Funct Mater 22:2759

    Article  CAS  Google Scholar 

  51. Gerstner W, Sprekeler H, Deco G (2012) Science 338:60

    Article  CAS  Google Scholar 

  52. Hodgkin AL, Huxley AF (1952) J Physiol (London, UK) 117:500

    Article  CAS  Google Scholar 

  53. Ruiz Villarreal M (2007) Complete neuron cell diagram. https://commons.wikimedia.org/wiki/File:Complete_neuron_cell_diagram_en.svg. Visited on 02/18/2016

  54. Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Filho WJ, Lent R, Herculano-Houzel S (2009) J Comp Neurol 513:532

    Article  Google Scholar 

  55. von Neumann J (1956) Automata Stud 34:43

    Google Scholar 

  56. Katz B, Miledi R (1969) J Physiol 203(3):689

    Article  CAS  Google Scholar 

  57. Bliss TVP, Lømo T (1973) J Physiol 232:331

    Article  CAS  Google Scholar 

  58. Gaiarsa J-L, Caillard O, Ben-Ari Y (2002) Trends Neurosci 25:564

    Article  CAS  Google Scholar 

  59. Hebb DO (1949) Wiley

    Google Scholar 

  60. Sjöström PJ, Turrigiano GG, Nelson SB (2001) Neuron 32:1149

    Article  Google Scholar 

  61. Markram H, Lübke J, Frotscher M, Sakmann B (1997) Science 275:213

    Article  CAS  Google Scholar 

  62. Abraham WC (2008) Nat Rev Neurosci 9:387

    Article  CAS  Google Scholar 

  63. Abraham WC, Bear MF (1996) Trends Neurosci 19:126

    Article  CAS  Google Scholar 

  64. Abraham WC, Tate WP (1997) Prog Neurobiol 52:303

    Article  CAS  Google Scholar 

  65. Chua L (1971) IEEE Trans 18:507

    Article  Google Scholar 

  66. Chua L, Kang SM (1976) Proc IEEE 64:209

    Article  Google Scholar 

  67. Pershin YV, Di Ventra M (2010) Neural Netw 23:881

    Article  Google Scholar 

  68. Strukov D, Kohlstedt H (2012) MRS Bull 37:108

    Article  CAS  Google Scholar 

  69. Wuttig M, Yamada N (2007) Nat Mater 6:824

    Article  CAS  Google Scholar 

  70. Raoux S, Ielmini D, Wuttig M, Karpov I (2012) MRS Bull 37:118

    Article  CAS  Google Scholar 

  71. Hudgens S, Johnson B (2004) MRS Bull 29:829

    Article  CAS  Google Scholar 

  72. Wright CD, Liu Y, Kohary KI, Aziz MM, Hicken RJ (2011) Adv Mater 23:3408

    Article  CAS  Google Scholar 

  73. Freitas R, Wilcke W (2008) IBM J Res Dev 52:439

    Article  Google Scholar 

  74. Mott NF, Friedman L (1974) Philos Mag 30:389

    Article  CAS  Google Scholar 

  75. Nakano M, Shibuya K, Okuyama D, Hatano T, Ono S, Kawasaki M, Iwasa Y, Tokura Y (2012) Nature 487:459

    Article  CAS  Google Scholar 

  76. Waser R, Dittmann R, Staikov G, Szot K (2009) Adv Mater 21:2632

    Article  CAS  Google Scholar 

  77. Hicks C, Dietmar R, Eugster M (2005) EIA Rev 25:459

    Google Scholar 

  78. Nakayama Y, Pauzauskie PJ, Radenovic A, Onorato RM, Saykally RJ, Liphardt J, Yang P (1098) Nature 2007:447

    Google Scholar 

  79. Terabe K, Hasegawa T, Nakayama T, Aono M (2005) Nature 433:47

    Article  CAS  Google Scholar 

  80. Lee M-J, Lee CB, Lee D, Lee SR, Chang M, Hur JH, Kim Y-B, Kim C-J, Seo DH, Seo S, Chung U-I, Yoo I-K, Kim K (2011) Nat Mater 10:625

    Article  CAS  Google Scholar 

  81. Wedig A, Luebben M, Cho D-Y, Moors M, Skaja K, Rana V, Hasegawa T, Depalli KK, Yildiz B, Waser R, Valov I (2016) Nat Nano 11:67

    Article  CAS  Google Scholar 

  82. Likharev K (2003) IEEE-NANO 1:339

    Article  Google Scholar 

  83. Snider GS (2007) Nanotechnology 18:365202

    Article  Google Scholar 

  84. Ziegler M, Soni R, Patelczyk T, Ignatov M, Bartsch T, Meuffels P, Kohlstedt H (2012) Adv Funct Mater 22:2744

    Article  CAS  Google Scholar 

  85. Querlioz D, Bichler O, Gamrat C (2011). In: The 2011 international joint conference on neural networks (IJCNN), p 1775

    Google Scholar 

  86. Kim K-H, Gaba S, Wheeler D, Cruz-Albrecht JM, Hussain T, Srinivasa N, Lu W (2012) Nano Lett 12:389

    Article  CAS  Google Scholar 

  87. Alibart F, Zamanidoost E, Struko DB (2013) Nat Commun 4:2072

    Article  Google Scholar 

  88. Eryilmaz SB, Kuzum D, Jeyasingh R, Kim S, BrightSky M, Lam C, Wong H-SP (2014) Front Neurosci 8:205

    Article  Google Scholar 

  89. Serrano-Gotarredona T, Prodromakis T, Linares-Barranco B (2013) IEEE Circuits Syst Mag 13:74

    Article  Google Scholar 

  90. Cruz-Albrecht JM, Derosier T, Srinivasa N (2013) Nanotechnology 24:384011

    Article  Google Scholar 

  91. Erturk A, Inman DJ (2011) Piezoelectric energy harvesting. Wiley, New York

    Book  Google Scholar 

  92. Wang ZL, Song J (2006) Science 312:242

    Article  CAS  Google Scholar 

  93. Wang X, Song J, Liu J, Wang ZL (2007) Science 316:102

    Article  CAS  Google Scholar 

  94. Qin Y, Wang X, Wang ZL (2008) Nature 451:809

    Article  CAS  Google Scholar 

  95. Lee K-Y, Kumar B, Seo J-S, Kim K-H, Sohn J-I, Cha S-N, Choi D, Wang ZL, Kim SW (1959) Nano Lett 2012:12

    Google Scholar 

  96. Takei K, Takahashi T, Ho JC, Ko H, Gillies AG, Leu PW, Fearing RS, Javey A (2010) Nat Mater 9:821

    Article  CAS  Google Scholar 

  97. Chen X, Xu S, Yao N, Shi S (2012) Nano Lett 10:2133

    Article  Google Scholar 

  98. Park K-I, Xu S, Liu Y, Hwang G-T, Kang S-J, Wang ZL, Lee KJ (2010) Nano Lett 10:4939

    Article  CAS  Google Scholar 

  99. Buhrer CF (1962) J Chem Phys 36:798

    Article  CAS  Google Scholar 

  100. Kim D-H, Joung M-R, Seo I-T, Hur J, Kim J-H, Kim B-Y, Lee H-J, Nahm S (2014) J Eur Ceram Soc 34:4193–4200

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Ho Lee .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, TH. (2018). Literature Survey. In: Formation of KNbO3 Thin Films for Self-Powered ReRAM Devices and Artificial Synapses. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-2535-9_2

Download citation

Publish with us

Policies and ethics