Skip to main content

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSSIGNAL))

Abstract

Since compressive sensing (CS) theory has come into the world, it has been widely applied in many fields. It was claimed that both sampling and compression can be performed simultaneously to reduce the sampling rate at the expense of a high computation complexity at the reconstruction stage. By virtue of the sparsity, a signal, which is randomly projected at the encoder side, can be reconstructed by searching the optimal solution of an under determined linear system at the decoder side. In information security field, the CS can be utilized for multimedia data security, cloud computing security, internet of things (IoT) security, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  2. R.G. Baraniuk, Compressive sensing. IEEE Signal Process. Mag. 24(4), 118–121 (2007)

    Article  Google Scholar 

  3. E.J. Candès, M.B. Wakin, An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)

    Article  Google Scholar 

  4. E.J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  Google Scholar 

  5. E.J. Candès, T. Tao, Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005)

    Article  MathSciNet  Google Scholar 

  6. E.J. Candès, T. Tao, Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006)

    Article  MathSciNet  Google Scholar 

  7. N. Zhou, A. Zhang, F. Zheng, L. Gong, Novel image compression-encryption hybrid algorithm based on key-controlled measurement matrix in compressive sensing. Opt. Laser Techn. 62, 152–160 (2014)

    Article  Google Scholar 

  8. N. Zhou, A. Zhang, J. Wu, D. Pei, Y. Yang, Novel hybrid image compression-encryption algorithm based on compressive sensing. Optik 125(18), 5075–5080 (2014)

    Article  Google Scholar 

  9. S.N. George, D.P. Pattathil, A novel approach for secure compressive sensing of images using multiple chaotic maps. J. Opt. 43(1), 1–17 (2014)

    Article  Google Scholar 

  10. J. Lang, J. Zhang, Optical image cryptosystem using chaotic phase-amplitude masks encoding and least-data-driven decryption by compressive sensing. Opt. Commun. 338, 45–53 (2015)

    Article  Google Scholar 

  11. H. Liu, D. Xiao, Y. Liu, Y. Zhang, Securely compressive sensing using double random phase encoding. Optik 126(20), 2663–2670 (2015)

    Article  Google Scholar 

  12. Y. Zhang, L.Y. Zhang, Exploiting random convolution and random subsampling for image encryption and compression. Electron. Lett. 51(20), 1572–1574 (2015)

    Article  Google Scholar 

  13. L.Y. Zhang, K.-W. Wong, Y. Zhang, Q. Lin, Joint quantization and diffusion for compressed sensing measurements of natural images, in Proceedings of IEEE International Symposium on Circuits and Systems, ISCAS (2015), pp. 2744–2747

    Google Scholar 

  14. L.Y. Zhang, K.-W. Wong, Y. Zhang, J. Zhou, Bi-level protected compressive sampling. IEEE Trans. Multimed. 18(9), 1720–1732 (2016)

    Article  Google Scholar 

  15. J. Li, J.S. Li, Y.Y. Pan, R. Li, Compressive optical image encryption. Sci. Rep. 5, 10374 (2015)

    Article  Google Scholar 

  16. Y. Zhang, J. Zhou, F. Chen, L.Y. Zhang, K.-W. Wong, H. Xing, D. Xiao, Embedding cryptographic features in compressive sensing. Neurocomput. 205, 472–480 (2016)

    Article  Google Scholar 

  17. R. Fay, Introducing the counter mode of operation to compressed sensing based encryption. Inf. Process. Lett. 116(4), 279–283 (2016)

    Article  MathSciNet  Google Scholar 

  18. Y. Zhang, J. Zhou, F. Chen, L.Y. Zhang, D. Xiao, B. Chen, L. Xiaofeng, A block compressive sensing based scalable encryption framework for protecting significant image regions. Int. J. Bifurcat. Chaos 26(11), 1650191 (2016)

    Article  Google Scholar 

  19. H. Huang, X. He, Y. Xiang, W. Wen, Y. Zhang, A compression-diffusion-permutation strategy for securing image. Signal Process. 150, 183–190 (2018)

    Article  Google Scholar 

  20. D. Zhang, X. Liao, B. Yang, Y. Zhang, A fast and efficient approach to color-image encryption based on compressive sensing and fractional Fourier transform. Multimed. Tools Appl. 77(2), 2191–2208 (2018)

    Article  Google Scholar 

  21. J. Chen, Y. Zhang, L.Y. Zhang, On the security of optical ciphers under the architecture of compressed sensing combining with double random phase encoding. IEEE Photonics J. 9(4), 1–11 (2017)

    MathSciNet  Google Scholar 

  22. X. Chai, Z. Gan, Y. Chen, Y. Zhang, A visually secure image encryption scheme based on compressive sensing. Signal Process. 134, 35–51 (2017)

    Article  Google Scholar 

  23. N. Zhou, J. Yang, C. Tan, S. Pan, Z. Zhou, Double-image encryption scheme combining DWT-based compressive sensing with discrete fractional random transform. Opt. Commun. 354, 112–121 (2015)

    Article  Google Scholar 

  24. X. Chai, X. Zheng, Z. Gan, D. Han, Y. Chen, An image encryption algorithm based on chaotic system and compressive sensing. Signal Process. 148, 124–144 (2018)

    Article  Google Scholar 

  25. Y. Zhang, L.Y. Zhang, J. Zhou, L. Liu, F. Chen, X. He, A review of compressive sensing in information security field. IEEE Access 4, 2507–2519 (2016)

    Article  Google Scholar 

  26. X. Li, X. Meng, X. Yang, Y. Yin, Y. Wang, X. Peng, W. He, G. Dong, H. Chen, Multiple-image encryption based on compressive ghost imaging and coordinate sampling. IEEE Photonics J. 8(4), 1–11 (2016)

    Google Scholar 

  27. G. Hu, D. Xiao, Y. Wang, T. Xiang, An image coding scheme using parallel compressive sensing for simultaneous compression-encryption applications. J. Visual Commun. Image Represent. 44, 116–127 (2017)

    Article  Google Scholar 

  28. G. Hu, D. Xiao, Y. Wang, T. Xiang, Q. Zhou, Securing image information using double random phase encoding and parallel compressive sensing with updated sampling processes. Opt. Lasers Eng. 98, 123–133 (2017)

    Article  Google Scholar 

  29. N. Zhou, S. Pan, S. Cheng, Z. Zhou, Image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing. Opt. Laser Tech. 82, 121–133 (2016)

    Article  Google Scholar 

  30. G. Valenzise, M. Tagliasacchi, S. Tubaro, G. Cancelli, M. Barni, A compressive-sensing based watermarking scheme for sparse image tampering identification, in Proceedings of 16th IEEE International Conference on Image Processing, ICIP (2009), pp. 1265–1268

    Google Scholar 

  31. X. Zhang, Z. Qian, Y. Ren, G. Feng, Watermarking with flexible self-recovery quality based on compressive sensing and compositive reconstruction. IEEE Trans. Inf. Forensics Sec. 6(4), 1223–1232 (2011)

    Article  Google Scholar 

  32. H.-C. Huang, F.-C. Chang, C.-H. Wu, W.-H. Lai, Watermarking for compressive sampling applications, in Proceedings of Eighth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IIH-MSP (2012), pp. 223–226

    Google Scholar 

  33. I. Orovic, A. Draganic, S. Stankovic, Compressive sensing as a watermarking attack, in Proceedings of 21st Telecommunications Forum, TELFOR (2013), pp. 741–744

    Google Scholar 

  34. I. Orovic, S. Stankovic, Combined compressive sampling and image watermarking, in Proceedings of 55th International Symposium on ELMAR (IEEE, 2013), pp. 41–44

    Google Scholar 

  35. D. Xiao, M. Deng, Y. Zhang, Robust and separable watermarking algorithm in encrypted image based on compressive sensing. J. Electron. Inf. Techn. 37(5), 1248–1254 (2015)

    Google Scholar 

  36. H. Liu, D. Xiao, R. Zhang, Y. Zhang, S. Bai, Robust and hierarchical watermarking of encrypted images based on compressive sensing. Signal Process.-Image Commun. 45, 41–51 (2016)

    Article  Google Scholar 

  37. W. Li, J.-S. Pan, L. Yan, C.-S. Yang, H.-C. Huang, Data hiding based on subsampling and compressive sensing, in Proceedings of Ninth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (2013), pp. 611–614

    Google Scholar 

  38. J.-S. Pan, W. Li, C.-S. Yang, L.-J. Yan, Image steganography based on subsampling and compressive sensing. Multimed. Tools Appl., 1–15 (2014)

    Google Scholar 

  39. D. Xiao, S. Chen, Separable data hiding in encrypted image based on compressive sensing. Electron. Lett. 50(8), 598–600 (2014)

    Article  Google Scholar 

  40. G. Hua, Y. Xiang, G. Bi, When compressive sensing meets data hiding. IEEE Signal Process. Lett. 23(4), 473–477 (2016)

    Article  Google Scholar 

  41. M. Li, D. Xiao, Y. Zhang, Reversible data hiding in block compressed sensing images. ETRI J. 38(1), 159–163 (2016)

    Article  Google Scholar 

  42. L.-W. Kang, C.-S. Lu, C.-Y. Hsu, Compressive sensing-based image hashing, in Proceedings of 16th IEEE International Conference on Image Processing, ICIP (2009), pp. 1285–1288

    Google Scholar 

  43. M. Tagliasacchi, G. Valenzise, S. Tubaro, Hash-based identification of sparse image tampering. IEEE Trans. Image Process. 18(11), 2491–2504 (2009)

    Article  MathSciNet  Google Scholar 

  44. R. Sun, W. Zeng, Secure and robust image hashing via compressive sensing. Multimed. Tools Appl. 70(3), 1651–1665 (2014)

    Article  Google Scholar 

  45. H. Liu, D. Xiao, Y. Xiao, Y. Zhang, Robust image hashing with tampering recovery capability via low-rank and sparse representation. Multimed. Tools Appl. 75(13), 7681–7696 (2016)

    Article  Google Scholar 

  46. H. Suzuki, M. Suzuki, T. Urabe, T. Obi, M. Yamaguchi, N. Ohyama, Secure biometric image sensor and authentication scheme based on compressed sensing. Appl. Opt. 52(33), 8161–8168 (2013)

    Article  Google Scholar 

  47. H. Suzuki, M. Takeda, T. Obi, M. Yamaguchi, N. Ohyama, K. Nakano, Encrypted sensing for enhancing security of biometric authentication, in Proceedings of 13th Workshop on Information Optics (WIO) (2014), pp. 1–3

    Google Scholar 

  48. D. Xiao, M. Deng, X. Zhu, A reversible image authentication scheme based on compressive sensing. Multimed. Tools Appl. 74(18), 7729–7752 (2015)

    Article  Google Scholar 

  49. J. Chen, Z.-L. Zhu, C. Fu, L.-B. Zhang, Y. Zhang, Information authentication using sparse representation of double random phase encoding in fractional fourier transform domain. Optik 136, 1–7 (2017)

    Article  Google Scholar 

  50. L.-W. Kang, C.-Y. Lin, H.-W. Chen, C.-M. Yu, C.-S. Lu, C.-Y. Hsu, S.-C. Pei, Secure transcoding for compressive multimedia sensing, in Proceedings of 18th IEEE International Conference on Image Processing, ICIP (2011), pp. 917–920

    Google Scholar 

  51. J.K. Pillai, V.M. Patel, R. Chellappa, N.K. Ratha, Secure and robust iris recognition using random projections and sparse representations. IEEE Trans. Pattern Anal. Mach. Intell. 33(9), 1877–1893 (2011)

    Article  Google Scholar 

  52. L. Liu, A. Wang, C.-C. Chang, Z. Li, A novel real-time and progressive secret image sharing with flexible shadows based on compressive sensing. Signal Process.-Image Commun. 29(1), 128–134 (2014)

    Article  Google Scholar 

  53. J. Qi, X. Hu, Y. Ma, Y. Sun, A hybrid security and compressive sensing-based sensor data gathering scheme. IEEE Access 3, 718–724 (2015)

    Article  Google Scholar 

  54. M. Cossalter, M. Tagliasacchi, G. Valenzise, Privacy-enabled object tracking in video sequences using compressive sensing, in Proceedings of Sixth IEEE International Conference on Advanced Video and Signals-based Surveillance (2009), pp. 436–441

    Google Scholar 

  55. L. Tong, F. Dai, Y. Zhang, J. Li, D. Zhang, Compressive sensing based video scrambling for privacy protection, in Proceedings of IEEE Visual Communications and Image Processing, VCIP (2011), pp. 1–4

    Google Scholar 

  56. X. Chen, H. Zhao, A novel video content authentication algorithm combined semi-fragile watermarking with compressive sensing, in Proceedings of Second International Conference on Intelligent System Design and Engineering Application, ISDEA (2012), pp. 134–137

    Google Scholar 

  57. L.G. Jyothish, V. Veena, K. Soman, A cryptographic approach to video watermarking based on compressive sensing, arnold transform, sum of absolute deviation and svd, in Proceedings of Annual International Conference on Emerging Research Areas (2013), pp. 1–5

    Google Scholar 

  58. G. Valenzise, G. Prandi, M. Tagliasacchi, A. Sarti, Identification of sparse audio tampering using distributed source coding and compressive sensing techniques. J. Image Video Process. 2009, 1 (2009)

    Article  Google Scholar 

  59. W. Zhu, C. Luo, J. Wang, S. Li, Multimedia cloud computing. IEEE Signal Process. Mag. 28(3), 59–69 (2011)

    Article  Google Scholar 

  60. L.-W. Kang, K. Muchtar, J.-D. Wei, C.-Y. Lin, D.-Y. Chen, C.-H. Yeh, privacy-preserving multimedia cloud computing via compressive sensing and sparse representation, in Proceedings of International Conference on Information Security and Intelligent Control, ISIC (2012), pp. 246–249

    Google Scholar 

  61. C. Wang, B. Zhang, K. Ren, J. Wang, Privacy-assured outsourcing of image reconstruction service in cloud. IEEE Trans. Emerg. Top. Comput. 1(1), 166–177 (2013)

    Article  Google Scholar 

  62. Q. Wang, W. Zeng, J. Tian, A compressive sensing based secure watermark detection and privacy preserving storage framework. IEEE Trans. Image Process. 23(3), 1317–1328 (2014)

    Article  MathSciNet  Google Scholar 

  63. Y. Zhang, H. Huang, Y. Xiang, L.Y. Zhang, X. He, Harnessing the hybrid cloud for secure big image data service. IEEE Internet Things J. 4(5), 1380–1388 (2017)

    Article  Google Scholar 

  64. G. Hu, D. Xiao, T. Xiang, S. Bai, Y. Zhang, A compressive sensing based privacy preserving outsourcing of image storage and identity authentication service in cloud. Inf. Sci. 387, 132–145 (2017)

    Article  Google Scholar 

  65. C. Wang, B. Zhang, K. Ren, J.M. Roveda, C.W. Chen, Z. Xu, A privacy-aware cloud-assisted healthcare monitoring system via compressive sensing, in Proceedings of INFOCOM (2014), pp. 2130–2138

    Google Scholar 

  66. Y. Zhang, J. Zhou, L.Y. Zhang, F. Chen, X. Lei, Support-set-assured parallel outsourcing of sparse reconstruction service for compressive sensing in multi-clouds, in Proceedings of International Symposium on Security and Privacy in Social Networks and Big Data, SocialSec (2015), pp. 1–6

    Google Scholar 

  67. Y. Zhang, J. Zhou, Y. Xiang, L.Y. Zhang, F. Chen, S. Pang, X. Liao, Computation outsourcing meets lossy channel: secure sparse robustness decoding service in multi-clouds. IEEE Trans. Big Data (in press, 2017)

    Google Scholar 

  68. J. Granjal, E. Monteiro, J.S. Silva, Security for the internet of things: a survey of existing protocols and open research issues. IEEE Commun. Surveys Tuts. 17(3), 1294–1312 (2015)

    Article  Google Scholar 

  69. J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, W. Zhao, A survey on internet of things: architecture, enabling technologies, security and privacy, and applications. IEEE Internet Things J. 4(5), 1125–1142 (2017)

    Article  Google Scholar 

  70. Y. Yang, L. Wu, G. Yin, L. Li, H. Zhao, A survey on security and privacy issues in internet-of-things. IEEE Internet Things J. 4(5), 1250–1258 (2017)

    Article  Google Scholar 

  71. A. Mukherjee, Physical-layer security in the internet of things: sensing and communication confidentiality under resource constraints. Proc. IEEE 103(10), 1747–1761 (2015)

    Article  Google Scholar 

  72. A. Fragkiadakis, E. Tragos, A. Makrogiannakis, S. Papadakis, P. Charalampidis, M. Surligas, Signal processing techniques for energy efficiency, security, and reliability in the IoT domain, in Internet of Things (IoT) in 5G Mobile Technologies (Springer, 2016), pp. 419–447

    Google Scholar 

  73. A. Fragkiadakis, P. Charalampidis, E. Tragos, Adaptive compressive sensing for energy efficient smart objects in IoT applications, in 4th International Conference on Wireless Communications, Vehicular Technology, Information Theory and Aerospace and Electronic Systems, VITAE (IEEE, 2014), pp. 1–5

    Google Scholar 

  74. N. Wang, T. Jiang, W. Li, S. Lv, Physical-layer security in internet of things based on compressed sensing and frequency selection. IET Commun. 11(9), 1431–1437 (2017)

    Article  Google Scholar 

  75. M. Wilhelm, I. Martinovic, J.B. Schmitt, Secure key generation in sensor networks based on frequency-selective channels. IEEE J. Sel. Areas Commun. 31(9), 1779–1790 (2013)

    Article  Google Scholar 

  76. S.A. Alvi, B. Afzal, G.A. Shah, L. Atzori, W. Mahmood, Internet of multimedia things: vision and challenges. Ad Hoc Netw. 33, 87–111 (2015)

    Article  Google Scholar 

  77. Y. Zhang, Q. He, Y. Xiang, L.Y. Zhang, B. Liu, J. Chen, Y. Xie, Low-cost and confidentiality-preserving data acquisition for internet of multimedia things. IEEE Internet Things J. (in press, 2017)

    Google Scholar 

  78. W. Xue, C. Luo, G. Lan, R.K. Rana, W. Hu, A. Seneviratne, Kryptein: a compressive-sensing-based encryption scheme for the internet of things, in Proceedings of 16th ACM/IEEE International Conference on Information Processing in Sensor Networks, IPSN (2017), pp. 169–180

    Google Scholar 

  79. B. Kailkhura, S. Liu, T. Wimalajeewa, P.K. Varshney, Measurement matrix design for compressed detection with secrecy guarantees. IEEE Wireless Commun. Lett. 5(4), 420–423 (2016)

    Article  Google Scholar 

  80. B. Kailkhura, T. Wimalajeewa, P.K. Varshney, Collaborative compressive detection with physical layer secrecy constraints. IEEE Trans. Signal Process. 65(4), 1013–1025 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yushu Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Y., Xiang, Y., Zhang, L.Y. (2019). Compressive Sensing. In: Secure Compressive Sensing in Multimedia Data, Cloud Computing and IoT. SpringerBriefs in Electrical and Computer Engineering(). Springer, Singapore. https://doi.org/10.1007/978-981-13-2523-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2523-6_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2522-9

  • Online ISBN: 978-981-13-2523-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics