Skip to main content

Structural and Functional Connectivity: A Combined Analysis of Patients with Multiple Sclerosis Using Joint-ICA

  • Conference paper
  • First Online:
XXVI Brazilian Congress on Biomedical Engineering

Abstract

The human brain can be compared to a “bundle of wires” composed by neurons that interconnect distinct gray matter regions. These “bundle of wires” are the principal composition of the white matter and has the fundamental function of conducting the synaptic signals to the gray matter. Functional magnetic resonance imaging (fMRI) corresponds to a neuroimage modality optimized to quantify neural activity that occurs in the gray matter, whereas the Diffusion Tensor Imaging (DTI) is another neuroimage modality optimized to quantify distinct white matter properties. Despite the resulting signal of these image modalities come from different tissues, they are signals that contain complementary information. In neurodegenerative diseases such as Multiple Sclerosis (MS), the myelin sheath of neurons are damaged, and can provoke a series of dysfunctions such as motor disability, problems with speech, visual problems, fatigue, among other complications. Knowing the existence of this intimate functional and structural correlation among white and gray matter, this study seeks to unify both, functional connectivity measures of fMRI and structural connectivity measures of DTI, using the statistical tool joint independent component analysis (J-ICA). Results show that the coupling of these different imaging modalities is modulated by scores derived from neuropsychological tests used to evaluate patient’s cognitive impairment by MS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trapp, B.D., Peterson, J., Ransohoff, R.M., et al.: Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med. 338, 278–285 (1998). https://doi.org/10.1056/NEJM199801293380502

    Article  Google Scholar 

  2. Sbardella, E., Petsas, N., Tona, F., Pantano, P.: Resting-state fMRI in MS: general concepts and brief overview of its application. Biomed. Res. Int. 2015, 1–8 (2015). https://doi.org/10.1155/2015/212693

    Article  Google Scholar 

  3. Goldenberg, M.M.: Multiple sclerosis review. P T 37:175–184 (2012)

    Google Scholar 

  4. Browne, P., Chandraratna, D., Angood, C., et al.: Atlas of multiple sclerosis 2013: a growing global problem with widespread inequity. Neurol. 83, 1022–1024 (2014). https://doi.org/10.1212/WNL.0000000000000768

    Article  Google Scholar 

  5. Calhoun, V.D., Adalı, T., Kiehl, K.A., et al.: A method for multitask fMRI data fusion applied to schizophrenia. Hum. Brain Mapp. 27, 598–610 (2006). https://doi.org/10.1002/hbm.20204

    Article  Google Scholar 

  6. Calhoun, V.D., Adali, T., Giuliani, N.R., et al.: Method for multimodal analysis of independent source differences in schizophrenia: combining gray matter structural and auditory oddball functional data. Hum. Brain Mapp. 27, 47–62 (2006). https://doi.org/10.1002/hbm.20166

    Article  Google Scholar 

  7. Franco, A.R., Ling, J., Caprihan, A., et al: Multimodal and multi-tissue measures of connectivity revealed by joint independent component analysis. IEEE J Sel Top Signal Process (2008). https://doi.org/10.1109/jstsp.2008.2006718

  8. Sui, J., Pearlson, G., Caprihan, A., et al.: Discriminating schizophrenia and bipolar disorder by fusing fMRI and DTI in a multimodal CCA+ joint ICA model. Neuroimage 57, 839–855 (2011). https://doi.org/10.1016/j.neuroimage.2011.05.055

    Article  Google Scholar 

  9. Stephen, J.M., Coffman, B.A., Jung, R.E., et al.: Using joint ICA to link function and structure using MEG and DTI in schizophrenia. Neuroimage 83, 418–430 (2013). https://doi.org/10.1016/j.neuroimage.2013.06.038

    Article  Google Scholar 

  10. Calhoun, V.D., Adali, T., Pearlson, G.D., Kiehl, K.A.: Neuronal chronometry of target detection: fusion of hemodynamic and event-related potential data. Neuroimage 30, 544–553 (2006). https://doi.org/10.1016/j.neuroimage.2005.08.060

    Article  Google Scholar 

  11. Le Bihan, D.: Diffusion MRI: what water tells us about the brain. EMBO. Mol. Med. (2014). https://doi.org/10.1002/emmm.201404055

  12. Jones, D.K., Williams, S.C.R., Gasston, D., et al.: Isotropic resolution diffusion tensor imaging with whole brain acquisition in a clinically acceptable time. Hum. Brain Mapp. 15, 216–230 (2002). https://doi.org/10.1002/hbm.10018

    Article  Google Scholar 

  13. Le Bihan, D., Mangin, J.-F., Poupon, C., et al.: Diffusion tensor imaging: concepts and applications. J. Magn. Reson. Imaging 13, 534–546 (2001). https://doi.org/10.1002/jmri.1076

    Article  Google Scholar 

  14. Pierpaoli, C., Basser, P.J.: Toward a quantitative assessment of diffusion anisotropy. Magn. Reson. Med. 36, 893–906 (1996)

    Article  Google Scholar 

  15. Ogawa, S., Tank, D.W., Menon, R., et al.: Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 89, 5951–5955 (1992). https://doi.org/10.1073/pnas.89.13.5951

    Article  Google Scholar 

  16. Ogawa, S., Lee, T.-M., Nayak, A.S., Glynn, P.: Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn. Reson. Med. 14, 68–78 (1990). https://doi.org/10.1002/mrm.1910140108

    Article  Google Scholar 

  17. Birn, R.M., Bandettini, P.A., Cox, R.W., Shaker, R.: Event-related fMRI of tasks involving brief motion. Hum. Brain Mapp. 7, 106–114 (1999). https://doi.org/10.1002/(SICI)1097-0193(1999)7:2%3c106:AID-HBM4%3e3.0.CO;2-O

    Article  Google Scholar 

  18. Raichle, M.E.: The restless brain. Brain Connect. 1, 3–12 (2011). https://doi.org/10.1089/brain.2011.0019

    Article  Google Scholar 

  19. Mohan, A., Roberto, A.J., Mohan, A., et al.: The significance of the Default Mode Network (DMN) in neurological and neuropsychiatric disorders: a r eview. Yale J. Biol. Med. 89, 49–57 (2016)

    Google Scholar 

  20. Buckner, R.L., Andrews-Hanna, J.R., Schacter, D.L.: The brain’s default network. Ann. N. Y. Acad. Sci. 1124, 1–38 (2008)

    Article  Google Scholar 

  21. Bell, A.J., Sejnowski, T.J.: An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7, 1129–1159 (1995). https://doi.org/10.1162/neco.1995.7.6.1129

    Article  Google Scholar 

  22. Gronwall, D.M.A.: Paced auditory serial-addition task: a measure of recovery from concussion. Percept. Mot. Ski. 44, 367–373 (1977). https://doi.org/10.2466/pms.1977.44.2.367

    Article  Google Scholar 

  23. Fischer, J.S., Rudick, R.A., Cutter, G.R., Reingold, S.C.: The multiple sclerosis functional composite measure (MSFC): an integrated approach to MS clinical outcome assessment. Mult. Scler. J. 5, 244–250 (1999). https://doi.org/10.1177/135245859900500409

    Article  Google Scholar 

  24. Pierpaoli, C., Walker, L., Irfanoglu, M.O., et al.: TORTOISE: an integrated software package for processing of diffusion MRI data (2010)

    Google Scholar 

  25. Rohde, G.K., Barnett, A.S., Basser, P.J., et al.: Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI. Magn. Reson. Med. 51, 103–114 (2004). https://doi.org/10.1002/mrm.10677

    Article  Google Scholar 

  26. Cox, R.W.: AFNI: what a long strange trip it’s been. Neuroimage 62, 743–747 (2012). https://doi.org/10.1016/j.neuroimage.2011.08.056

    Article  Google Scholar 

  27. Fonov, V.S., Evans, A.C., McKinstry, R.C., et al.: Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. Neuroimage 47, S102 (2009). https://doi.org/10.1016/S1053-8119(09)70884-5

    Article  Google Scholar 

  28. Taylor, P.A., Saad, Z.S.: FATCAT: (an efficient) functional and tractographic connectivity analysis toolbox. Brain Connect. 3, 523–535 (2013)

    Article  Google Scholar 

  29. Beckmann, C.F., Smith, S.M.: Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans. Med. Imaging 23, 137–152 (2004)

    Article  Google Scholar 

  30. Erhardt, E.B., Rachakonda, S., Bedrick, E.J., et al.: Comparison of multi-subject ICA methods for analysis of fMRI data. Hum. Brain Mapp. 32, 2075–2095 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This academic study was financially supported by Novartis. The authors received no reimbursement or financial benefits. Novartis played no role in the study design, methods, data management or analysis, or in the decision to publish. A graduate student scholarship from CAPES also supported for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Osmar Alves Filho .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no conflict of interest associated with this wok.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Filho, J.O.A. et al. (2019). Structural and Functional Connectivity: A Combined Analysis of Patients with Multiple Sclerosis Using Joint-ICA. In: Costa-Felix, R., Machado, J., Alvarenga, A. (eds) XXVI Brazilian Congress on Biomedical Engineering. IFMBE Proceedings, vol 70/2. Springer, Singapore. https://doi.org/10.1007/978-981-13-2517-5_71

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2517-5_71

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2516-8

  • Online ISBN: 978-981-13-2517-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics