Skip to main content

Water Footprint of a Decentralised Wastewater Treatment Strategy Based on Membrane Technology

  • Chapter
  • First Online:
Environmental Water Footprints

Abstract

Growing pressure on water resources has led to the search for alternatives to conventional wastewater treatment plants (WWTPs). Centralized wastewater treatment systems provide a single treatment scheme but are not especially adequate for water reuse as large flows of reclaimed water need to be efficiently managed. As an alternative, a new concept of wastewater treatment based on decentralized systems arise, which comprises collection, treatment and final disposal and/or reuse of water in an area close to the point of origin. Turkey is severely affected by water scarcity, thus, it is essential to improve water recovery through efficient technologies that allow nutrient recovery and have the potential for water reuse for irrigation to counteract consumption of drinking water. In this study, a decentralized membrane bioreactor (MRB) plant in Turkey was evaluated within the framework of the most relevant environmental indicators under the approach of Life Cycle Assessment: climate change (CC) and eutrophication potential (EP). In addition, the water scarcity footprint indicator was estimated using the available remaining water method (AWARE). This category should be taken into account when addressing the potential benefits associated with water reuse. Once the impacts of the plant under study were determined, a sensitivity analysis was carried out considering different solid retention times (SRT) in the MBR operation and the influence of the impacts associated with the construction phase. The sub-processes with the greatest impacts are electricity consumption in the operational phase and infrastructure in the construction phase. These impacts are significantly reduced when water is reused for irrigation of green areas, approximately 23% in CC, 4.8% in EP and 133.8% in AWARE indicator. No significant influence of the SRT variable was observed on environmental impacts for the range examined, since it only affected the eutrophication category, determining an optimum SRT value of 50 days for the MBR operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AD:

Anaerobic Digestion

AMD:

Availability Minus Demand

AnMBR:

Anaerobic Membrane Bioreactor

ASP:

Activated Sludge Process

AWARE:

Available Water Remaining

BW:

Black Water

BWS:

Black Water Source-Separation

CAS:

Conventional Activated Sludge

CC:

Climate Change

CF:

Characterization Factor

CML:

Centre of Environmental Science of Leiden University

COD:

Chemical Oxygen Demand

CP:

Composting

CTA:

Consumption to Availability

DTA:

Demand to Availability

EB:

Environmental Burdens

EP:

Eutrophication Potential

EPDM:

Synthetic rubber

EWR:

Environmental Water Requirements

FAT:

Full-advanced treatment

FU:

Functional Unit

GAC:

Granular Activated Carbon

GHG:

Greenhouse gases

GROW:

Green Roof Water

GW:

Grey Water

HDPE:

High Density Polyethylene

HRAS:

High Rate Activated Sludge

HRT:

Hydraulic Retention Time

HS:

Hybrid System

HWC:

Human Water Consumption

IPCC:

Intergovernmental Panel on Climate Change

LDPE:

Low Density Polyethylene

LCA:

Life Cycle Assessment

LCI:

Life Cycle Inventory

LF:

Landfilling

MBR:

Membrane Bioreactor

MCF:

Membrane Chemical Reactor

MF:

Microfiltration membrane

MFZ:

Multi-family zone

MLSS:

Mixed Liquor Suspended Solids

NEB:

Net Environmental Benefit

NR:

Natural Resources

PEI:

Potential Environmental Impacts

PES:

Polyethersulfone

PET:

Polyethylene Terephthalate

PVDF:

Polyvinylidene fluoride

SBR:

Sequencing Batch Reactor

SFZ:

Single-family zone

SGD:

Specific Gas Demand

SRT:

Solids Retention Time

TMP:

Transmembrane pressure

UASB:

Upflow Anaerobic Sludge Blanket

UFO:

Ultrafiltration osmotic

UK:

United Kingdom

UV:

Ultraviolet

VFM:

Variable Flow Method

VRM:

Membrane Vacuum Bioreactor

WFN:

Water Footprint Network

WTA:

Withdrawal to Availability

WULCA:

Water Use in LCA

WWTP:

Wastewater treatment plant

References

  • Arslan-Alaton, I., Türkman, A., & Orhon, D. (2010). Future of water resources and wastewater reuse in Turkey. Chapter 31. In Climate Change and Its Effects on Water Resources. Springer.

    Google Scholar 

  • Battistoni, P., Fatone, F., Bolzonella, D., & Pavan, P. (2006). Full scale application of the coupled alternate cycles-membrane bioreactor (AC-MBR) process for wastewater reclamation and reuse. IWA World Water Congr. Exhib.

    Google Scholar 

  • Bayart, J.-B., & Ekambi, E. (2016). WULCA-AWARE case study: Application of AWARE to bottled water and beverages 28.

    Google Scholar 

  • Bayart, J. B., Bulle, C., Deschênes, L., Margni, M., Pfister, S., Vince, F., et al. (2010). A framework for assessing off-stream freshwater use in LCA. International Journal of Life Cycle Assessment, 15, 439–453. https://doi.org/10.1007/s11367-010-0172-7.

    Article  CAS  Google Scholar 

  • Becker, A. M., Yu, K., Stadler, L. B., & Smith, A. L. (2017). Co-management of domestic wastewater and food waste: A life cycle comparison of alternative food waste diversion strategies. Bioresource Technology, 223, 131–140. https://doi.org/10.1016/j.biortech.2016.10.031.

    Article  CAS  Google Scholar 

  • Bixio, D., Thoeye, C., De Koning, J., Joksimovic, D., Savic, D., Wintgens, T., et al. (2006). Wastewater reuse in Europe. Desalination, 187, 89–101. https://doi.org/10.1016/j.desal.2005.04.070.

    Article  CAS  Google Scholar 

  • Boulay, A. M., Bare, J., De Camillis, C., Döll, P., Gassert, F., Gerten, D., Humbert, S., Inaba, A., Itsubo, N., Lemoine, Y., Margni, M., Mothoshita, M., Núñez, M., Pastor, A. V., Ridoutt, B., Schencker, U., Shirakawa, N., Vionnet, S., Worbe, S., Yoshikawa, S., & Pfister, S. (2015). Consensus building on the development of a stress-based indicator for LCA-based impact assessment of water consumption: Outcome of the expert workshops. International Journal Life Cycle Assess. 20.

    Google Scholar 

  • Brepols, C., Dorgeloh, E., Frechen, F. B., Fuchs, W., Haider, S., Joss, A., et al. (2008). Upgrading and retrofitting of municipal wastewater treatment plants by means of membrane bioreactor (MBR) technology. Desalination, 231, 20–26. https://doi.org/10.1016/j.desal.2007.11.035.

    Article  CAS  Google Scholar 

  • Bui, X. T., Vo, T. P. T., Ngo, H. H., Guo, W. S., & Nguyen, T. T. (2016). Multicriteria assessment of advanced treatment technologies for micropollutants removal at large-scale applications. Science of the Total Environment, 563–564, 1050–1067. https://doi.org/10.1016/j.scitotenv.2016.04.191.

    Article  CAS  Google Scholar 

  • Cakmak, B., Uçar, Y., & Akuzum, T. (2007). Water resources management problems and solutions for Turkey. In International Congress on River Basin Management (pp. 867–880).

    Google Scholar 

  • Chen, J. P., Mou, H., Wang, L. K., & Matsuura, T. (2006). Membrane filtration. In Wang, L. K., Hung, Y. -T., & Shammas, N. K. (Eds.), Advanced Physicochemical Treatment Processes. (pp. 203–259). Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-029-4_7

  • Chen, R., & Wang, X. C. (2009). Cost-benefit evaluation of a decentralized water system for wastewater reuse and environmental protection. Water Science and Technology, 59, 1515–1522. https://doi.org/10.2166/wst.2009.156.

    Article  CAS  Google Scholar 

  • Coday, B. D., Xu, P., Beaudry, E. G., Herron, J., Lampi, K., Hancock, N. T., et al. (2014). The sweet spot of forward osmosis: Treatment of produced water, drilling wastewater, and other complex and difficult liquid streams. Desalination, 333, 23–35. https://doi.org/10.1016/j.desal.2013.11.014.

    Article  CAS  Google Scholar 

  • Comninellis, C., Kapalka, A., Malato, S., Parsons, S., Poulios, I., & Mantzavinos, D. (2008). Advanced oxidation process for water treatment: Advances and trends for R&D. Journal of Chemical Technology and Biotechnology, 83, 769–776.

    Article  CAS  Google Scholar 

  • Doka, G. (2003). Life cycle inventories of waste treatment services. Ecoinvent Report no. 13 Part IV: wastewater treatment. Swiss Centre for Life Cycle Inventories.

    Google Scholar 

  • Dominguez, S., Laso, J., Margallo, M., Aldaco, R., Rivero, M. J., Irabien, Á., et al. (2018). LCA of greywater management within a water circular economy restorative thinking framework. Science of the Total Environment, 621, 1047–1056. https://doi.org/10.1016/j.scitotenv.2017.10.122.

    Article  CAS  Google Scholar 

  • Dones R., Bauer C., Bolliger R., Burger B., Faist Emmenegger M., Frischknecht R., Heck T., Jungbluth N., Röder A., & T. M. (2007). Life cycle inventories of energy systems: results of current systems in Switzerland and other UCTE countries. Ecoinvent Rep. 5. https://doi.org/10.1007/s11367-014-0838-7.

  • DSI, W. (2012). General directorate of state hydarulic works. Ministry of Forestry adn Water Affairs.

    Google Scholar 

  • ECC. (1991). Directive 91/271/1991 ECC of 21 May 1991 concerning urban waste water treatment. Official Journal of the European Communities.

    Google Scholar 

  • Elias, X. (2012). Reciclaje de residuos industriales. Díaz de Santos: Residuos sólidos urbanos y fangos de depuradora.

    Google Scholar 

  • FAO. (2018). AQUASTAT [WWW Document]. Retrieved December 6, 2018, from, www.fao.org.

  • Fenu, A., Roels, J., Wambecq, T., de Gussem, K., Thoeye, C., de Gueldre, G., et al. (2010). Energy audit of a full scale MBR system. Desalination, 262, 121–128. https://doi.org/10.1016/j.desal.2010.05.057.

    Article  CAS  Google Scholar 

  • Foley, J., de Haas, D., Hartley, K., & Lant, P. (2010). Comprehensive life cycle inventories of alternative wastewater treatment systems. Water Research, 44, 1654–1666. https://doi.org/10.1016/j.watres.2009.11.031.

    Article  CAS  Google Scholar 

  • Frischknecht, R., Fantke, P., Tschümperlin, L., Niero, M., Antón, A., Bare, J., Boulay, A. M., Cherubini, F., Hauschild, M. Z., Henderson, A., Levasseur, A., McKone, T. E., Michelsen, O., i Canals, L. M., Pfister, S., Ridoutt, B., Rosenbaum, R. K., Verones, F., Vigon, B., & Jolliet, O. (2016). Global guidance on environmental life cycle impact assessment indicators: Progress and case study. International Journal Life Cycle Assess. 21, 429–442. https://doi.org/10.1007/s11367-015-1025-1.

  • Gil, M. J., Soto, A. M., Usma, J. I., & Gutiérrez, O. M. (2012).Contaminantes emergentes en aguas, efectos y posibles tratamientos. Producción + limpia, 7, 52–73.

    Google Scholar 

  • Godin, D., Bouchard, C., & Vanrolleghem, P. A. (2012). Net environmental benefit: Introducing a new LCA approach on wastewater treatment systems. Water Science and Technology, 65, 1624–1631. https://doi.org/10.2166/wst.2012.056.

    Article  CAS  Google Scholar 

  • Goedkoop, M., Heijungs, R., Huijbregts, M., Schryver, A. De, Struijs, J., Zelm, R. Van (2009). ReCiPe 2008. Potentials 1–44. https://doi.org/10.029/2003JD004283

    Google Scholar 

  • Guinée, J. (2002). Handbook on life cycle assessment operational guide to the iso standards. Environmental Impact Assessment Review, 23, 129–130. https://doi.org/10.1016/S0195-9255(02)00101-4.

    Article  Google Scholar 

  • Hochstrat, R., Joksimovic, D., Wintgens, T., Melin, T., & Savic, D. (2007). Economic considerations and decision support tool for wastewater reuse scheme planning. Water Science and Technology, 56, 175–182. https://doi.org/10.2166/wst.2007.570.

    Article  CAS  Google Scholar 

  • Høibe, L., Clauson-Kaas, J., Wenzel, H., Larsen, H. F., Jacobsen, B. N., & Dalgaard, O. (2008). Sustainability assessment of advanced wastewater treatment technologies. Water Science and Technology, 58, 963–968.

    Article  CAS  Google Scholar 

  • Holloway, R. W., Miller-Robbie, L., Patel, M., Stokes, J. R., Munakata-Marr, J., Dadakis, J., et al. (2016). Life-cycle assessment of two potable water reuse technologies: MF/RO/UV-AOP treatment and hybrid osmotic membrane bioreactors. Journal of Membrane Science, 507, 165–178. https://doi.org/10.1016/j.memsci.2016.01.045.

    Article  CAS  Google Scholar 

  • Hophmayer-Tokich, S. (2006). Wastewater management strategy: Centralized versus decentralized technologies for small communities. CSTM-Reeks, 271, 27.

    Google Scholar 

  • Hospido, A., Sanchez, I., Rodriguez-Garcia, G., Iglesias, A., Buntner, D., Reif, R., et al. (2012). Are all membrane reactors equal from an environmental point of view? Desalination, 285, 263–270. https://doi.org/10.1016/j.desal.2011.10.011.

    Article  CAS  Google Scholar 

  • Ioannou-Ttofa, L., Foteinis, S., Chatzisymeon, E., & Fatta-Kassinos, D. (2016). The environmental footprint of a membrane bioreactor treatment process through Life Cycle Analysis. Science of the Total Environment, 568, 306–318. https://doi.org/10.1016/j.scitotenv.2016.06.032.

    Article  CAS  Google Scholar 

  • ISO 14040. (2006). International Organization for Standardization, ISO 14040. Environmental management-life cycle assessment—principles and framework, Geneve.

    Google Scholar 

  • Jeong, H., Broesicke, O. A., Drew, B., & Crittenden, J. C. (2018). Life cycle assessment of small-scale greywater reclamation systems combined with conventional centralized water systems for the City of Atlanta. Georgia Journal of Cleaner Production, 174, 333–342. https://doi.org/10.1016/j.jclepro.2017.10.193.

    Article  Google Scholar 

  • Judd, S. (2011). Principles and applications of membrane bioreactors for water and wastewater treatment. The MBR Book.

    Google Scholar 

  • Kalbar, P. P., Karmakar, S., & Asolekar, S. R. (2012). Technology assessment for wastewater treatment using multiple-attribute decision-making. Technology in Society, 34, 295–302. https://doi.org/10.1016/j.techsoc.2012.10.001.

    Article  Google Scholar 

  • Komesli, O. T., & Gökçay, C. F. (2014). Investigation of sludge viscosity and its effects on the performance of a vacuum rotation membrane bioreactor. Environmental Technology (United Kingdom), 35, 645–652. https://doi.org/10.1080/09593330.2013.840655.

    Article  CAS  Google Scholar 

  • Komesli, O. T., Muz, M., Ak, S., & Gökçay, C. F. (2015). Prolonged reuse of domestic wastewater after membrane bioreactor treatment. Desalination and Water Treatment, 53, 3295–3302. https://doi.org/10.1080/19443994.2014.934107.

    Article  CAS  Google Scholar 

  • Komesli, O. T., Teschner, K., Hegemann, W., & Gokcay, C. F. (2007). Vacuum membrane applications in domestic wastewater reuse. Desalination, 215, 22–28. https://doi.org/10.1016/j.desal.2006.10.025.

    Article  CAS  Google Scholar 

  • Kounina, A., Margni, M., Bayart, J.-B., Boulay, A.-M., Berger, M., Bulle, C., Frischknecht, R., Koehler, A., Milà i Canals, L., Motoshita, M., Núñez, M., Peters, G., Pfister, S., Ridoutt, B., van Zelm, R., Verones, F., & Humbert, S. (2013). Review of methods addressing freshwater use in life cycle inventory and impact assessment. International Journal Life Cycle Assess. 18, 707–721. https://doi.org/10.1007/s11367-012-0519-3.

  • Krzeminski, P., Langhorst, W., Schyns, P., de Vente, D., Van den Broeck, R., Smets, I. Y., et al. (2012). The optimal MBR configuration: Hybrid versus stand-alone—Comparison between three full-scale MBRs treating municipal wastewater. Desalination, 284, 341–348. https://doi.org/10.1016/j.desal.2011.10.038.

    Article  CAS  Google Scholar 

  • Lam, L., Kurisu, K., & Hanaki, K. (2015). Comparative environmental impacts of source-separation systems for domestic wastewater management in rural China. Journal of Cleaner Production, 104, 185–198. https://doi.org/10.1016/j.jclepro.2015.04.126.

    Article  Google Scholar 

  • Larsen, H. F., Hauschild, M., Wenzel, H., & Almemark, M. (2007). Homogeneous LCA methodology agreed by NEPTUNE and INNOWATECH. Denmark 1–34.

    Google Scholar 

  • Lehtoranta, S., Vilpas, R., & Mattila, T. J. (2014). Comparison of carbon footprints and eutrophication impacts of rural on-site wastewater treatment plants in Finland. Journal of Cleaner Production, 65, 439–446. https://doi.org/10.1016/j.jclepro.2013.08.024.

    Article  Google Scholar 

  • Lorenzo-Toja, Y., Alfonsín, C., Amores, M. J., Aldea, X., Marin, D., Moreira, M. T., & Feijoo, G. (2016a). Beyond the conventional life cycle inventory in wastewater treatment plants. Science of the Total Environment, 553, 71–82. https://doi.org/10.1016/j.scitotenv.2016.02.073

  • Lorenzo-Toja, Y., Vázquez-Rowe, I., Amores, M. J., Termes-Rifé, M., Marín-Navarro, D., Moreira, M. T., & Feijoo, G. (2016b). Benchmarking wastewater treatment plants under an eco-efficiency perspective. Science of the Total Environment, 566–567, 468–479. https://doi.org/10.1016/j.scitotenv.2016.05.110

  • Lundie, S., Peters, G. M., & Beavis, P. C. (2004). Life cycle assessment for sustainable metropolitan water systems planning. Environmental Science and Technology, 38, 3465–3473. https://doi.org/10.1021/es034206m.

    Article  CAS  Google Scholar 

  • Lundin, M., Bengtsson, M., & Molander, S. (2000). Life cycle assessment of wastewater systems: Influence of system boundaries and scale on calculated environmental loads. Environmental Science and Technology, 34, 180–186. https://doi.org/10.1021/es990003f.

    Article  CAS  Google Scholar 

  • Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J., et al. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of the Total Environment, 473–474, 619–641. https://doi.org/10.1016/j.scitotenv.2013.12.065.

    Article  CAS  Google Scholar 

  • Massoud, M. A., Tarhini, A., & Nasr, J. A. (2009). Decentralized approaches to wastewater treatment and management: Applicability in developing countries. Journal of Environmental Management, 90, 652–659. https://doi.org/10.1016/j.jenvman.2008.07.001.

    Article  Google Scholar 

  • Matos, C., Pereira, S., Amorim, E. V., Bentes, I., & Briga-Sa´, A. (2014). Wastewater and greywater reuse on irrigation in centralized and decentralized systems—An integrated approach on water quality, energy consumption and CO2emissions. Science of the Total Environment, 493, 463–471. https://doi.org/10.1016/j.scitotenv.2014.05.129.

  • Memon, F. A., Zheng, Z., Butler, D., Shirley-Smith, C., Lui, S., Makropoulos, C., et al. (2007). Life cycle impact assessment of greywater recycling technologies for new developments. Environmental Monitoring and Assessment, 129, 27–35. https://doi.org/10.1007/s10661-006-9422-3.

    Article  CAS  Google Scholar 

  • Meuler, S., Paris, S., & Hackner, T. (2008). Membrane bio-reactors for decentralized wastewater treatment and reuse. Water Science and Technology, 58, 285–294. https://doi.org/10.2166/wst.2008.356.

    Article  CAS  Google Scholar 

  • Morera, S., Corominas, L., Poch, M., Aldaya, M. M., & Comas, J. (2016). Water footprint assessment in wastewater treatment plants. Journal of Cleaner Production, 112, 4741–4748. https://doi.org/10.1016/j.jclepro.2015.05.102.

    Article  CAS  Google Scholar 

  • Nogueira, R., Brito, A. G., Machado, A. P., Janknecht, P., Salas, J. J., Vera, L., et al. (2009). Economic and environmental assessment of small and decentralized wastewater treatment systems. Desalination and Water Treatment, 4, 16–21. https://doi.org/10.5004/dwt.2009.349.

    Article  CAS  Google Scholar 

  • Opher, T., & Friedler, E. (2016). Comparative LCA of decentralized wastewater treatment alternatives for non-potable urban reuse. Journal of Environmental Management, 182, 464–476. https://doi.org/10.1016/j.jenvman.2016.07.080.

    Article  CAS  Google Scholar 

  • Ortiz, M., Raluy, R. G., & Serra, L. (2007). Life cycle assessment of water treatment technologies: Wastewater and water-reuse in a small town. Desalination, 204, 121–131. https://doi.org/10.1016/j.desal.2006.04.026.

    Article  CAS  Google Scholar 

  • Pasqualino, J. C., Meneses, M., & Castells, F. (2011). Life cycle assessment of urban wastewater reclamation and reuse alternatives. Journal of Industrial Ecology, 15, 49–63. https://doi.org/10.1111/j.1530-9290.2010.00293.x.

    Article  CAS  Google Scholar 

  • Pintilie, L., Torres, C. M., Teodosiu, C., & Castells, F. (2016). Urban wastewater reclamation for industrial reuse: An LCA case study. Journal of Cleaner Production, 139, 1–14. https://doi.org/10.1016/j.jclepro.2016.07.209.

    Article  Google Scholar 

  • Pretel, R., Robles, A., Ruano, M. V., Seco, A., & Ferrer, J. (2016). Economic and environmental sustainability of submerged anaerobic MBR-based (AnMBR-based) technology as compared to aerobic-based technologies for moderate-/high-loaded urban wastewater treatment. Journal of Environmental Management, 166, 45–54. https://doi.org/10.1016/j.jenvman.2015.10.004.

    Article  CAS  Google Scholar 

  • Pretel, R., Robles, A., Ruano, M. V., Seco, A., & Ferrer, J. (2013). Environmental impact of submerged anaerobic MBR (SAnMBR) technology used to treat urban wastewater at different temperatures. Bioresource Technology, 149, 532–540. https://doi.org/10.1016/j.biortech.2013.09.060.

    Article  CAS  Google Scholar 

  • Pretel, R., Shoener, B. D., Ferrer, J., & Guest, J. S. (2015). Navigating environmental, economic, and technological trade-offs in the design and operation of submerged anaerobic membrane bioreactors (AnMBRs). Water Research, 87, 531–541. https://doi.org/10.1016/j.watres.2015.07.002.

    Article  CAS  Google Scholar 

  • Prieto, A. L., Vuono, D., Hollaway, R., Benecke, J., Henkel, J., Cath, T. Y., Reid, T., Johson, L., & Drewes, J. (2013). Decentralized wastewater treatment for distributed water reclamation and reuse: The good, the bad and the ugly. Experience from a case study, in: In Novel Solutions to Water Pollution, American Chemical Society. Chapter 15.

    Google Scholar 

  • Puerto, M., 2013. Water scarcity footprint for cement production 1–4.

    Google Scholar 

  • Remy, C., & Jekel, M. (2008). Sustainable wastewater management: Life Cycle Assessment of conventional and source-separating urban sanitation systems. Water Science and Technology, 58, 1555–1562. https://doi.org/10.2166/wst.2008.533.

    Article  CAS  Google Scholar 

  • Rodriguez-Garcia, G., Molinos-Senante, M., Hospido, A., Hernández-Sancho, F., Moreira, M. T., & Feijoo, G. (2011). Environmental and economic profile of six typologies of wastewater treatment plants. Water Research, 45, 5997–6010. https://doi.org/10.1016/j.watres.2011.08.053.

    Article  CAS  Google Scholar 

  • Schenker, U., Roy, P., Boulay, A., & Gaillard, B. (2015). Comparison of water scarcity methods : Meat & vegetarian burger case study 6.

    Google Scholar 

  • Shehabi, A., Stokes, J. R., Horvath, A. (2012). Energy and air emission implications of a decentralized wastewater system. Environmental Research Letters, 7. https://doi.org/10.1088/1748-9326/8/1/019001.

  • Shoener, B. D., Zhong, C., Greiner, A. D., O. Khunjar, W., Hong, P. -Y., & Guest, J. S. (2016). Design of anaerobic membrane bioreactors for the valorization of dilute organic carbon waste streams. Energy and Environmental Science, 9, 1102–1112. https://doi.org/10.1039/C5EE03715H

  • Smith, A. L., Stadler, L. B., Cao, L., Love, N. G., Raskin, L., & Skerlos, S. J. (2014). Navigating wastewater energy recovery strategies: A life cycle comparison of anaerobic membrane bioreactor and conventional treatment systems with anaerobic digestion. Environmental Science and Technology, 48, 5972–5981. https://doi.org/10.1021/es5006169.

    Article  CAS  Google Scholar 

  • Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, B., & Midgley, B. M. (2013). IPCC, 2013: Summary for policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.

    Google Scholar 

  • Suh, Y., & Rousseaux, P. (2001). An LCA of alternative wastewter sludge treatment scenarios. Resources, Conservation and Recycling, 35, 191–200.

    Article  Google Scholar 

  • Tangsubkul, N., Beavis, P., Moore, S. J., Lundie, S., & Waite, T. D. (2005). Life cycle assessment of water recycling technology. Water Resource Management, 19, 521–537. https://doi.org/10.1007/s11269-005-5602-0.

    Article  Google Scholar 

  • Tangsubkul, N., Parameshwaran, K., Lundie, S., Fane, A. G., & Waite, T. D. (2006). Environmental life cycle assessment of the microfiltration process. Journal of Membrane Science, 284, 214–226. https://doi.org/10.1016/j.memsci.2006.07.047.

    Article  CAS  Google Scholar 

  • Tchobanoglous, G., Burton, F., & Stensel, H. D. (1998). Wastewater engineering: An overview. In Wastewater Engineering Treatment and Reuse, pp. 1–24. https://doi.org/10.1016/0309-1708(80)90067-6

  • Thibodeau, C., Monette, F., Bulle, C., & Glaus, M. (2014). Comparison of black water source-separation and conventional sanitation systems using life cycle assessment. Journal of Cleaner Production, 67, 45–57. https://doi.org/10.1016/j.jclepro.2013.12.012.

    Article  Google Scholar 

  • Wang, L. K., Chen, J. P., Hung, Y. T., & Shammas, N. (2011). Membrane and desalination technologies. In Handbook of Environmental Engineering. Humana Press.

    Google Scholar 

  • Weidema, B. P., Bauer, C., Hischier, R., Nemecek, T., Reinhard, J., Vadenbo, C. O., & Wernet, G. (2013). Overview and methodology. Data quality guideline for the ecoinvent database version 3. Swiss Cent. Life Cycle Invent. St. Gall.

    Google Scholar 

  • Wenzel, H., Larsen, H. F., Clauson-Kaas, J., Høibye, L., & Jacobsen, B. N. (2008). Weighing environmental advantages and disadvantages of advanced wastewater treatment of micro-pollutants using environmental life cycle assessment. Water Science and Technology, 57, 27–32. https://doi.org/10.2166/wst.2008.819.

    Article  CAS  Google Scholar 

  • Wiessmann, U., Choi, I. S., & Dombrowski, E. M. (2007). Fundamental of biological wastewater treatment. Wiley VCH.

    Google Scholar 

  • Yuksel, I. (2015). Water management for sustainable and clean energy in Turkey. Energy Reports, 1, 129–133. https://doi.org/10.1016/j.egyr.2015.05.001.

    Article  Google Scholar 

  • Zang, Y., Li, Y., Wang, C., Zhang, W., & Xiong, W. (2015). Towards more accurate life cycle assessment of biological wastewater treatment plants: A review. Journal of Cleaner Production, 107, 676–692. https://doi.org/10.1016/j.jclepro.2015.05.060.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the UE projects: Pioneer_STP (PCIN-2015-22 (MINECO)/ID199 (WaterJPI) and Run4Life (730285-1). The authors (A. Arias, G. Feijoo and M. T. Moreira) belong to the Galician Competitive Research Group (GRC ED431C 2017/29) and to the CRETUS Strategic Partnership (AGRUP2015/02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Moreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arias, A. et al. (2019). Water Footprint of a Decentralised Wastewater Treatment Strategy Based on Membrane Technology. In: Muthu, S. (eds) Environmental Water Footprints. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-13-2508-3_4

Download citation

Publish with us

Policies and ethics