Skip to main content

Evaluation of the Mechanical Properties of Recycled Jute Fiber–Reinforced Polymer Matrix Composites

  • Conference paper
  • First Online:
Proceedings of International Conference on Intelligent Manufacturing and Automation

Abstract

This paper aims to evaluate the mechanical properties of recyclable jute fiber, without chemical treatment and applied compression load on the Recycled Jute fiber layers to be in uniform and unidirectional. To evaluate its the mechanical properties, weights of 5, 10, 15, and 20 g were taken and added to epoxy and hardener—ratio kept constant for all specimens. Specimens were prepared by hand layup technique and were cut using a manual hacksaw frame with subsequent filing to avoid sharp and uneven notches. Testing was undertaken in order to evaluate the following mechanical characteristics: tensile properties, three-point flexural strength, compression using a computerized UTM (Inston 3369).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PMC:

Polymer matrix composite

NFRP:

Natural fiber reinforced composites

References

  1. K. Pickering, Aruan efendy, m.g., le, t.m., A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A, http://sci-hub.tw/10.1016/j.compositesa.2015.08.038.

  2. Hoi-yan Cheung, Mei-po Ho, Kin-tak Lau, Francisco Cardona, David Hui, Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Composites Part B: Engineering, Volume 40, Issue 7, 2009, 655–663, ISSN 1359-8368, http://sci-hub.tw/10.1016/j.compositesb.2009.04.014.

    Article  Google Scholar 

  3. S. J. S. DA, Book: Chap.1, On the recyclability of a cyclic thermoplastic composite (2005) 1–10.

    Google Scholar 

  4. S. A. R. L. F. M. R. L. A. D. Alves, C., Ferrao and P.M.C, Ecodesign of automotive components making use of natural jute fiber composites, L.B, Alves, Rodrigues. http://sci-hub.tw/10.1016/j.jclepro.2009.10.022.

  5. Ru-Min Wang, Shui-Rong Zheng, and Ya-Ping Zheng. Polymer Matrix Composites and Technology. Woodhead Publishing, ISBN 978-0-85709-221-2 (print).

    Google Scholar 

  6. S.M. Sapuan, K.F. Tamrin, Y. Nukman, Y.A. El-Shekeil, M.S.A. Hussin, and S.N.A. Aziz, 1.8 Natural Fiber-Reinforced Composites: Types, Development, Manufacturing Process, and Measurement, In: Comprehensive Materials Finishing, ed. M.S.J. Hashmi, Elsevier, Oxford, 2017, pp. 203–230, ISBN 9780128032497, http://sci-hub.tw/10.1016/B978-0-12-803581-8.09183-9.

    Chapter  Google Scholar 

  7. Ming Cai, Hitoshi Takagi, Antonio N. Nakagaito, Yan Li, and Geoffrey I.N. Waterhouse, Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Composites Part A: Applied Science and Manufacturing, Volume 90, 2016, pp. 589–597, ISSN 1359-835X, http://sci-hub.tw/10.1016/j.compositesa.2016.08.025.

    Article  Google Scholar 

  8. S. A. R. L. F. M. R. L. A. D. Alves, C. and Ferrao, P.M.C, Ecodesign of automotive components making use of natural jute fiber composites, L.B, Alves, Rodrigues. http://sci-hub.tw/10.1016/j.jclepro.2009.10.022.

  9. Araldite DBF/HY 951 Page 3, Mix Ratio, February 2005 2/6.

    Google Scholar 

  10. R. A. Braga and P.A.A. Magalhaes, Analysis of the mechanical and thermal properties of jute and glass fiber as reinforcement epoxy hybrid composites, Vol. 2015. http://sci-hub.tw/10.1016/j.msec.2015.06.031.

  11. Sweety Shahinur, 1, 2 Mahbub Hasan, 2 Qumrul Ahsan, 3 Dilip Kumar Saha, 4 and Md. Saiful Islam, 5Characterization of the Properties of Jute Fiber at Different Portions, International Journal of Polymer Science, Volume 2015 (2015), http://dx.doi.org/10.1155/2015/262348.

  12. Processing and Characterization of Jute Fiber Reinforced Thermoplastic Polymers, A.C. Karmaker and G. Hinrichsen, pp. 609–629, published online: September 22, 2006, http://sci-hub.tw/10.1080/03602559108019223.

  13. International Journal of Textile Science 2012, 1(6): 84–93 DOI:http://sci-hub.tw/10.5923/j.textile.20120106.05 Jute Composites as Wood Substitute Debiprasad Gon1,*, Kousik Das2, Palash Paul2, SubhankarMaity2 1Indian Jute Industries’ Research Association, 17, Taratala Road, Kolkata-88 2Panipat Institute of Engineering, Technology, Samalkha, Panipat, Haryana.

  14. Ming Cai, Hitoshi Takagi, Antonio N. Nakagaito, Yan Li, and Geoffrey I.N. Waterhouse, Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Composites Part A: Applied Science and Manufacturing, Volume 90, 2016, pp. 589–597, ISSN 1359-835X, http://sci-hub.tw/10.1016/j.compositesa.2016.08.025.

    Article  Google Scholar 

  15. Processing of Polymer Matrix Composites P. K. Mallick William E. Stirton Professor of Mechanical Engineering University of Michigan-Dearborn ISBN:-13: 978-1-4665-7822-7 (Hardback) Page No 120–126 4.1 CURE CYCLE FOR THERMOSETTING POLYMERS, 5.3 LAYUP TECHNIQUES 6.8 COMPRESSION MOLDING PARAMETERS 6.9 MOLD DESIGN CONSIDERATIONS.

    Google Scholar 

  16. Josh Kelly and Mohsen Mohammadi, Uniaxial tensile behavior of sheet molded composite car hoods with different fibre contents under quasi-static strain rates. Mechanics Research Communications, Volume 87, 2018, 42–52, ISSN 0093-6413, http://sci-hub.tw/10.1016/jmechrescom.2017.12.007.

    Article  Google Scholar 

  17. R. Sothornvit, C.W. Olsen, T.H. McHugh, and J.M. Krochta, Tensile properties of compression-molded whey protein sheets: Determination of molding condition and glycerol-content effects and comparison with solution-cast films. Journal of Food Engineering, Volume 78, Issue 3, 2007, 855–860, ISSN 0260-8774, http://sci-hub.tw/10.1016/j.jfoodeng.2005.12.002.

    Article  Google Scholar 

  18. M.V. de Sousa, S.N. Monteiro, and J.R.M. d’Almeida, Evaluation of pre-treatment, size and molding pressure on flexural mechanical behavior of chopped bagasse–polyester composites. Polymer Testing, Volume 23, Issue 3, 2004, 253–258, ISSN 0142-9418, http://sci-hub.tw/10.1016/j.polymertesting.2003.09.002.

    Article  Google Scholar 

  19. Ki-Taek Kim, Jin-Ho Jeong, and Yong-Taek Im, Effect of molding parameters on compression molded sheet molding compounds parts. Journal of Materials Processing Technology, Volume 67, Issues 1–3, 1997, 105–111, ISSN 0924-0136, http://sci-hub.tw/10.1016/S0924-0136(96)02827-0.

    Article  Google Scholar 

  20. M.J. Cawood and G.A.H. Smith, A compression moulding technique for thick sheets of thermoplastics. Polymer Testing, Volume 1, Issue 1, 1980, 3–7, ISSN 0142-9418, http://sci-hub.tw/10.1016/0142-9418(80)90022-7.

    Article  Google Scholar 

  21. Standard Practice for Compression Molding Thermoplastic Materials into Test Specimens, Plaques, or Sheets, Annual Book of ASTM Standards, Vol 08.01. Designation: D 4703–03.

    Google Scholar 

  22. ASTM D3039/D3039D-76, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, ASTM International, West Conshohocken, PA, 2017, www.astm.org.

  23. Ram Krishna Adhikari and B.S. Keerthi Gowda, Exploration of mechanical properties of banana/jute hybrid polyester composite. Materials Today: Proceedings, Volume 4, Issue 8, 2017, 7171–7176, ISSN 2214-7853, http://sci-hub.tw/10.1016/j.matpr.2017.07.043.

    Article  Google Scholar 

  24. ASTM D7264/D7264 M-15, Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials, ASTM International, West Conshohocken, PA, 2015, https://www.astm.org/Standards/D7264.htm.

  25. ASTM D3410/D3410 M-16, Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials with Unsupported Gage Section by Shear Loading, ASTM International, West Conshohocken, PA, 2016, www.astm.org.

  26. B. D. Y. XW, Plasma treatment of sisal fibers and its effects on tensile strength and interfacial bonding. 16 703–727. http://sci-hub.tw/10.1163/156856102760099898.

  27. Deng’an Cai, Guangming Zhou, and Vadim V. Silberschmidt, Effect of through-thickness compression on in-plane tensile strength of glass/epoxy composites: Experimental study. Polymer Testing, Volume 49, 2016, 1–7, ISSN 0142-9418, http://sci-hub.tw/10.1016/j.polymertesting.2015.10.015.

  28. R. Sothornvit, C.W. Olsen, T.H. McHugh, and J.M. Krochta, Tensile properties of compression-molded whey protein sheets: Determination of molding condition and glycerol-content effects and comparison with solution-cast films. Journal of Food Engineering, Volume 78, Issue 3, 2007, 855–860, ISSN 0260-8774, http://sci-hub.tw/10.1016/j.jfoodeng.2005.12.002.

    Article  Google Scholar 

  29. Sudhir P. Patil and Keshav K. Sangle, Shear and flexural behaviour of prestressed and non-prestressed plain and SFRC concrete beams. Journal of King Saud University – Engineering Sciences, Volume 29, Issue 4, 2017, 321–328, ISSN 1018-3639, http://sci-hub.tw/10.1016/j.jksues.2016.01.005.

    Article  Google Scholar 

  30. Michael I. Okereke, Flexural response of polypropylene/E-glass fibre reinforced unidirectional composites. Composites Part B: Engineering, Volume 89, 2016, 388–396, ISSN 1359-8368, http://sci-hub.tw/10.1016/j.compositesb.2016.01.007.

    Article  Google Scholar 

  31. Hasret Aydin, Rebecca J. Gravina, and Phillip Visintin, A partial-interaction approach for extracting FRP-to-concrete bond characteristics from environmentally loaded flexural tests. Composites Part B: Engineering, Volume 132, 2018, 214–228, ISSN 1359-8368, http://sci-hub.tw/10.1016/j.compositesb.2017.09.018.

    Article  Google Scholar 

  32. M.R. Bambach, Compression strength of natural fibre composite plates and sections of flax, jute and hemp. Thin-Walled Structures, Volume 119, 2017, 103–113, ISSN 0263-8231, http://sci-hub.tw/10.1016/j.tws.2017.05.034.

    Article  Google Scholar 

  33. R.J. Lee, Compression strength of aligned carbon fibre-reinforced thermoplastic laminates. Composites, Volume 18, Issue 1, 1987, 35–39, ISSN 0010-4361, http://sci-hub.tw/10.1016/0010-4361(87)90005-X.

    Article  Google Scholar 

Download references

Acknowledgements

I am thankful to my grandparents Mekala Narayana Reddy and Lakshmamma (Ramakka) for their financial support of this project. I completed this project under the guidance of Kunuthur Manohar Reddy (Ph.D.) and I am thankful to Dr. Chandaramohana Reddy. B for valuable suggestions in terms of the future development of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pullareddy Mekala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mekala, P., Kunuthur, M.R., Chandramohana Reddy, B. (2019). Evaluation of the Mechanical Properties of Recycled Jute Fiber–Reinforced Polymer Matrix Composites. In: Vasudevan, H., Kottur, V., Raina, A. (eds) Proceedings of International Conference on Intelligent Manufacturing and Automation. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-2490-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2490-1_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2489-5

  • Online ISBN: 978-981-13-2490-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics