Skip to main content

A New Quantum Version of f-Divergence

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 261))

Abstract

This paper proposes and studies new quantum version of f-divergences, a class of functionals of a pair of probability distributions including Kullback–Leibler divergence, Renyi-type relative entropy and so on. distance. There are several quantum versions so far, including the one by Petz (Rev Math Phys 23:691–747, 2011, [1]). We introduce another quantum version (\(\mathrm {D}_{f}^{\max }\), below), defined as the solution to an optimization problem, or the minimum classical f-divergence necessary to generate a given pair of quantum states. It turns out to be the largest quantum f-divergence. The closed formula of \(\mathrm {D}_{f}^{\max }\) is given either if f is operator convex, or if one of the state is a pure state. Also, concise representation of \(\mathrm {D}_{f}^{\max }\) as a pointwise supremum of linear functionals is given and used for the clarification of various properties of the quality. Using the closed formula of \(\mathrm {D}_{f}^{\max }\), we show: Suppose f is operator convex. Then the maximum f-divergence of the probability distributions of a measurement under the state \(\rho \) and \(\sigma \) is strictly less than \(\mathrm {D}_{f}^{\max }\left( \rho \Vert \sigma \right) \). This statement may seem intuitively trivial, but when f is not operator convex, this is not always true. A counter example is \(f\left( \lambda \right) =\left| 1-\lambda \right| \), which corresponds to total variation distance. We mostly work on finite dimensional Hilbert space, but some results are extended to infinite dimensional case.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hiai, F., Mosonyi, M., Petz D., and Beny, C.: Quantum \(f\)-divergences and error corrections. Rev. Math. Phys. 23, 691–747 (2011)

    Article  MathSciNet  Google Scholar 

  2. Strasser, H.: Mathematical Theory of Statistics—Statistical Experiments and Asymptotic Decision Theory. Walter de Gruyter, Berlin (1985).

    Google Scholar 

  3. Belavkin, V. P.: On Entangled Quantum Capacity. In: Quantum Communication, Computing, and Measurement, vol. 3, pp.325–333. Kluwer, Boston (2001)

    Google Scholar 

  4. Hammersley, S. J., Belavkin, V. P.: Information Divergence for Quantum Channels, Infinite Dimensional Analysis. In: Quantum Information and Computing, Quantum Probability and White Noise Analysis, pp.149–166, World Scientific, Singapore (2006)

    Google Scholar 

  5. Hiai, F., Petz, D.: The proper formula for relative entropy and its asymptotics in quantum probability. Comm. Math. Phys. 143, 99–114 (1991)

    Article  MathSciNet  Google Scholar 

  6. Amari, S., Nagaoka, H.: Methods of Information Geometry. AMS (2001)

    Google Scholar 

  7. Petz, D.: Monotone Metrics on Matrix Spaces. Linear Algebra and its Applications, 224, 81–96 (1996)

    Article  MathSciNet  Google Scholar 

  8. Holevo, A. S.: Probabilistic and Statistical Aspects of Quantum Theory, North-Holland, Amsterdam, (1982) (in Russian, 1980)

    Google Scholar 

  9. Hayashi, M.: Characterization of Several Kinds of Quantum Analogues of Relative Entropy. Quantum Information and Computation, Vol. 6, 583–596 (2006)

    Google Scholar 

  10. Matsumoto, K.: Reverse estimation theory, Complementarity between RLD and SLD, and monotone distances. arXiv:quant-ph/0511170 (2005)

  11. Jencova, A.: Affine connections, duality and divergences for a von Neumann algebra. arXiv:math-ph/0311004 (2003)

  12. Matsumoto, K.: Reverse test and quantum analogue of classical fidelity and generalized fidelity, arXiv:quant-ph/1006.0302 (2010)

  13. Rockafellar, R. T.: Convex Analysis. Princeton (1970)

    Google Scholar 

  14. Ebadian, A., Nikoufar, I., and Gordjic, M.: Perspectives of matrix convex functions. Proc. Natl Acad. Sci. USA, 108(18), 7313–7314 (2011)

    Article  MathSciNet  Google Scholar 

  15. Parthasarathy, K.: Probability and Measures on Metric Spaces. Academic Press (1967)

    Google Scholar 

  16. Matsumoto,  K. : On maximization of measured \(f\)-divergence between a given pair of quantum states, arXiv:1412.3676 (2014)

  17. Matsumoto, K.: A Geometrical Approach to Quantum Estimation Theory, doctoral dissertation, University of Tokyo (1998)

    Google Scholar 

  18. Chefles, A.: Deterministic quantum state transformations. Phys. Lett A 270, 14 (2000)

    Article  MathSciNet  Google Scholar 

  19. Uhlmann, A.: Eine Bemerkung uber vollstandig positive Abbildungen von Dichteopera-toren. Wiss. Z. KMU Leipzig, Math.-Naturwiss. R. 34(6), 580–582 (1985).

    Google Scholar 

  20. Luenberger, D. G.: Optimization by vector space methods. Wiley, New York (1969)

    MATH  Google Scholar 

  21. Ryan, R. A.: Introduction to tensor products of Banach spaces. Springer, Berlin (2002)

    Book  Google Scholar 

  22. Bhatia, R.: Matrix Analysis. Springer, Berlin (1996)

    MATH  Google Scholar 

  23. Bhatia, R.: Positive Definite Matrices. Princeton (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiji Matsumoto .

Editor information

Editors and Affiliations

Appendix 1: Some Backgrounds from Matrix Analysis

Appendix 1: Some Backgrounds from Matrix Analysis

Proposition 5

(Theorem V.2.3 of [22]) Let f be a continuous function on \([0,\infty )\). Then, if f is operator convex and \(f\left( 0\right) \le 0\), for any positive operator X and an operator C such that \(\left\| C\right\| \le 1\), \(f\left( C^{\dagger }XC\right) \le C^{\dagger }f\left( X\right) C\).

Proposition 6

(Equation (2.43) of [23]) Let f be a operator convex function defined on \([0,\infty )\). Let \(\varLambda ^{\dagger }\) be a unital positive map. Then

$$ f\left( \varLambda ^{\dagger }\left( A\right) \right) \le \varLambda ^{\dagger }\left( f\left( A\right) \right) $$

holds for any \(A\ge 0\).

Proposition 7

(Proposition 8.4 of [1]) Let f be a continuous operator convex function on \([0,\infty )\). Then, if

$$ a:=\lim _{\varepsilon \downarrow 0}\varepsilon f\left( 1/\varepsilon \right) =\lim _{x\rightarrow \infty }f\left( \lambda \right) /\lambda <\infty , $$

there is a real number a and a positive Borel measure \(\mu \) such that

$$ f\left( \lambda \right) =f\left( 0\right) +a\lambda +\int _{\left( 0,\infty \right) }\psi _{t}\left( \lambda \right) \mathrm {d}\mu \left( t\right) ,\,\,\,\,\psi _{t}\left( \lambda \right) :=-\frac{\lambda }{\lambda +t}, $$

and \(\int _{\left( 0,\infty \right) }\frac{\mathrm {d}\mu \left( t\right) }{1+t}<\infty \). Since \(\psi _{t}\) is operator monotone decreasing, this means that \(f\left( \lambda \right) \) is sum of linear function and operator monotone decreasing function.

Proposition 8

(Lemma 5.2 of [1]) If f is a complex-valued function on finitely many points \(\left\{ x_{i};i\in I\right\} \subset [0,\infty )\), then for any pairwise different positive numbers \(\left\{ t_{i};i\in I\right\} \) there exist complex numbers \(\left\{ c_{i};i\in I\right\} \) such that \(f\left( x_{i}\right) =\sum _{j\in I}\frac{c_{j}}{x_{i}+t_{j}}\) , \(i\in I\).

Proposition 9

(Exercise 1.3.5 of [23]) Let X, Y be a positive definite matrices. Then,

$$\begin{aligned} \left[ \begin{array} [c]{cc} X &{} C\\ C^{\dagger } &{} Y \end{array} \right] \ge 0 \end{aligned}$$
(83)

implies

$$\begin{aligned} X\ge CY^{-1}C^{\dagger },\,\,\,Y\ge C^{\dagger }X^{-1}C. \end{aligned}$$
(84)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Matsumoto, K. (2018). A New Quantum Version of f-Divergence. In: Ozawa, M., Butterfield, J., Halvorson, H., Rédei, M., Kitajima, Y., Buscemi, F. (eds) Reality and Measurement in Algebraic Quantum Theory. NWW 2015. Springer Proceedings in Mathematics & Statistics, vol 261. Springer, Singapore. https://doi.org/10.1007/978-981-13-2487-1_10

Download citation

Publish with us

Policies and ethics