Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 413 Accesses

Abstract

With the acceleration of industrialization and the rapid development of social economy, a large number of industrial and domestic wastewater is produced in China. The discharge of sewage to the receiving water body leads to the deterioration of water environment and poses a great threat to human health. The pollutants in the wastewater mainly include organic matter, heavy metals, and nutrients like nitrogen and phosphorus. Particularly, the presence of excessive nitrogen and phosphorus in water body could induce eutrophication, resulting in serious ecological environmental problems such as algae bloom, blackwater, dead fish, and so on. In order to deal with the increasingly serious water issues, China has enacted more stringent sewage discharge standards. “Urban sewage treatment plant pollutant discharge standards” (GB18918-2002) will be a discharge standard divided into standard A and standard B, with a higher emission requirement on total nitrogen imposed on standard A. The recently launched “Environmental Protection Law of the People’s Republic of China (2014 Revision)” on the sewage enterprises and units has put forward stringent water treatment requirements and regulatory measures. Therefore, it has become focus of research in the field of water pollution control to effectively reduce the nitrogen pollution in the water and develop energy-saving nitrogen removal technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboobakar, A., Cartmell, E., Stephenson, T., Jones, M., Vale, P., & Dotro, G. (2013). Nitrous oxide emissions and dissolved oxygen profiling in a full-scale nitrifying activated sludge treatment plant. Water Research, 47, 524–534.

    Article  CAS  Google Scholar 

  • Ahn, J. H., Kim, S. P., Park, H. K., Rahm, B., Pagilla, K., & Chandran, K. (2010). N2O Emissions from activated sludge processes, 2008–2009: Results of a national monitoring survey in the United States. Environmental Science and Technology, 44, 4505–4511.

    Article  CAS  Google Scholar 

  • Anderson, I. C., Poth, M., Homstead, J., & Burdige, D. (1993). A comparison of nitric oxide and nitrous oxide production by the autotrophic nitrifier Nitrosomonas europaea and the heterotrophic nitrifier Alcaligenes faecalis. Applied and Environmental Microbiology, 59, 3525–3533.

    CAS  Google Scholar 

  • Arts, P. A. M., Robertson, L. A., & Kuenen, J. G. (1995). Nitrification and denitrification by Thisphaera pantotropha in aerobic chemostat cultures. FEMS Microbiology Ecology, 18, 305–316.

    Article  CAS  Google Scholar 

  • Barnes, J. M., Apel, W. A., & Barrett, K. B. (1995). Removal of nitrogen oxides from gas streams using biofiltration. Journal of Hazardous Materials, 41, 315–326.

    Article  CAS  Google Scholar 

  • Beaumont, H., Lens, S., Reijinders, W., Westerhoff, H., & van Spanning, R. (2004). Expression of nitrite reductase in Nitrosomonas europaea involves NsrR, a novel nitrite-sensitive transcription repressor. Molecular Microbiology, 54, 148–158.

    Article  CAS  Google Scholar 

  • Bell, L. C., Richardson, D. J., & Ferguson, S. J. (1990). Periplasmic and membrane-bound respiratory nitrate reductases in Thiosphaera pantotropha. The periplasmic enzyme catalyzes the first step in aerobic denitrification. FEBS Letter, 4, 85–87.

    Article  Google Scholar 

  • Bergaust, L., Shapleigh, J., Frostegard, A., & Bakken, L. (2008). Transcription and activities of NOx reductases in Agrobacterium tumefaciens: The influence of nitrate, nitrite and oxygen availability. Environmental Microbiology, 10, 3070–3081.

    Article  CAS  Google Scholar 

  • Berks, B. C., Baratta, D., Richardson, J., & Ferguson, S. J. (1993). Purification and characterization of a nitrous oxide reductase from Thiosphaera pantotropha. Implications for the mechanism of aerobic nitrous oxide reduction. European Journal of Biochemistry, 212, 467–476.

    Article  CAS  Google Scholar 

  • Beun, J. J., Dircks, K., Van Loosdrecht, M. C., & Heijnen, J. J. (2002). Poly-beta-hydroxybutyrate metabolism in dynamically fed mixed microbial cultures. Water Research, 36, 1167–1180.

    Article  CAS  Google Scholar 

  • Bock, E., Schmidt, I., Stuven, R., & Zart, D. (1995). Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor. Archives of Microbiology, 163, 16–20.

    Article  CAS  Google Scholar 

  • Braker, G., Zhou, J., Wu, L., Devol, A. H., & Tiedje, J. M. (2000). Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in pacific northwest marine sediment communities. Applied and Environmental Microbiology, 66, 2096–2104.

    Article  CAS  Google Scholar 

  • Butler, M. D., Wang, Y. Y., Cartmell, E., & Stephenson, T. (2009). Nitrous oxide emissions for early warning of biological nitrification failure in activated sludge. Water Research, 43, 1265–1272.

    Article  CAS  Google Scholar 

  • Campos, J. L., Mosquera-Corral, A., Sanchez, M., Mendez, R., & Lema, J. M. (2002). Nitrification in saline wastewater with high ammonia concentration in an activated sludge unit. Water Research, 36, 2555–2560.

    Article  CAS  Google Scholar 

  • Cantera, J. J. L., & Stein, L. Y. (2007). Molecular diversity of nitrite reductase genes (nirK) in nitrifying bacteria. Environmental Microbiology, 9, 765–776.

    Article  CAS  Google Scholar 

  • Casciotti, K. L., & Ward, B. B. (2001). Dissimilatory nitrite reductase genes from autotrophic ammonia-oxidizing bacteria. Applied and Environmental Microbiology, 67, 2213–2221.

    Article  CAS  Google Scholar 

  • Chen, Q., & Ni, J. R. (2011). Heterotrophic nitrification-aerobic denitrification by novel isolated bacteria. Journal of Industrial Microbiology and Biotechnology, 38, 1305–1310.

    Article  CAS  Google Scholar 

  • Chen, P. Z., Li, J., Li, Q. X., Wang, Y. C., Li, S. P., Ren, T. Z., & Wang, L. G. (2012). Simultaneous heterotrophic nitrification and aerobic denitrification by bacterium Rhodococcus sp. CPZ24. Bioresource Technology, 116, 266–270.

    Article  CAS  Google Scholar 

  • Chen, J. W., & Strous, M. (2013). Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution. Biochimica et Biophysica Acta, 1827, 136–144.

    Article  CAS  Google Scholar 

  • Chen, M., Wang, W., Feng, Y., Zhu, X., Zhou, H., Tan, Z., & Li, X. (2014). Impact resistance of different factors on ammonia removal by heterotrophic nitrificationaerobic denitrification bacterium Aeromonas sp. HN-02. Bioresource Technology, 167, 456–461.

    Article  CAS  Google Scholar 

  • Chen, D., Yang, K., Wang, H., Lv, B., & Ma, F. (2015). Characteristics of nitrate removal in a bio-ceramsite reactor by aerobic denitrification. Environmental Technology, 36, 1457–1463.

    Article  CAS  Google Scholar 

  • Christensson, M., Lie, E., & Welander, T. (1994). A comparison between ethanol and methanol as carbon sources for denitrification. Water Science and Technology, 30, 83–90.

    Article  CAS  Google Scholar 

  • Chuang, H. P., Ohashi, A., Imachi, H., Tandukar, M., & Harada, H. (2007). Effective partial nitrification to nitrite by down-flow hanging sponge reactor under limited oxygen condition. Water Research, 41, 295–302.

    Article  CAS  Google Scholar 

  • Czepiel, P., Crill, P., & Harriss, R. (1995). Nitrous oxide emissions from municipal wastewater treatment. Environmental Science and Technology, 29, 2352–2356.

    Article  CAS  Google Scholar 

  • Daigger, G. T., & Littleton, H. X. (2000). Characterization of simultaneous nutrient removal in staged, closed-loop bioreactors. Water Environmental Research, 72, 330.

    Article  CAS  Google Scholar 

  • Dalal Ram, C., Robertson, W. W., Philip, G., & Parton, W. J. (2003). Nitrous oxide emission from Australian agricultural lands and mitigation options: A review. Australian Journal of Chemistry, 41, 165–195.

    Google Scholar 

  • Dean, J. A. (1992). Lange’s handbook of chemistry. New York: McGraw-Hill, Inc..

    Google Scholar 

  • Desloover, J., De Clippeleir, H., Boeckx, P., Du Laing, G., Colsen, J., Verstraete, W., & Vlaeminck, S. E. (2011). Floc-based sequential partial nitration and anammox at full scale with contrasting N2O emissions. Water Research, 45, 2811–2821.

    Article  CAS  Google Scholar 

  • Duan, J., Fang, H., Su, B., Chen, J., & Lin, J. (2015). Characterization of a halophilic heterotrophic nitrification-aerobic denitrification bacterium and its application on treatment of saline wastewater. Bioresource Technology, 179, 421–428.

    Article  CAS  Google Scholar 

  • Foley, J., De Haas, D., Yuan, Z., & Lant, P. (2010). Nitrous oxide generation in full scale BNR wastewater treatment plants. Water Research, 44, 831–844.

    Article  CAS  Google Scholar 

  • Frette, L., Gejlsbjerg, B., & Westermann, P. (1997). Aerobic denitrifiers isolated from an alternating activated sludge system. FEMS Microbiology Ecology, 24, 363–370.

    Article  CAS  Google Scholar 

  • Fujiwara, T., & Fukumori, Y. (1996). Cytochrome cb-type nitric oxide reductase with cytochrome c oxidase activity from Paracoccus denitrificans ATCC 35512. Journal of Bacteriology, 178, 1866–1871.

    Article  CAS  Google Scholar 

  • Fukumoto, Y., Suzuki, K., Osada, T., Kuroda, K., Hanajima, D., Yasuda, T., & Haga, K. (2006). Reduction of nitrous oxide emission from pig manure composting by addition of nitrite-oxidizing bacteria. Environmental Science and Technology, 40, 6787–6791.

    Article  CAS  Google Scholar 

  • Fulop, V., Moir, J. W., Ferguson, S. J., & Hajdu, J. (1995). The anatomy of a bifunctional enzyme: Structural basis for reduction of oxygen to water and synthesis of nitric oxide by cytochrome cd1. Cell, 81, 369–377.

    Article  CAS  Google Scholar 

  • Garbeva, P., Baggs, E. M., & Prosser, J. I. (2007). Phylogeny of nitrite reductase (nirK) and nitric oxide reductase (norB) genes from Nitrosospira species isolated from soil. FEMS Microbiology Letter, 266, 83–89.

    Article  CAS  Google Scholar 

  • Garrido, J. M., Moreno, J., Mendez-Pampin, R., & Lema, J. M. (1998). Nitrous oxide production under toxic conditions in a denitrifying anoxic filter. Water Research, 32, 2550–2552.

    Article  CAS  Google Scholar 

  • Glass, C., & Silverstein, J. (1999). Denitrification of high-nitrate, high salinity wastewater. Water Research, 33, 223–229.

    Article  CAS  Google Scholar 

  • Goreau, T. J., Kaplan, W. A., Wofsy, S. C., McElroy, M. B., Valois, F. W., & Watson, S. W. (1980). Production of NO2 and N2O by nitrifying bacteria at reduced concentrations of oxygen. Applied and Environmental Microbiology, 40, 526–532.

    CAS  Google Scholar 

  • Guo, L., Lamaire-Chad, C., Bellandi, G., Daelman, M., Amerlinck, Y., Maere, T., Nous, J., Flameling, T., Weijers, S., van Loosdrecht, M. C. M., Volcke, E. I. P., Nopens, I., & Vanrolleghem, P. A. (2013). High-frequency field measurement of nitrous oxide (N 2 O) gas emissions and influencing factors at WWTPs under dry and wet weather conditions. Conference: WEF/IWA Nutrient Removal and Recovery, July 29–31, 2013, At Vancouver, Canada.

    Google Scholar 

  • Gupta, A. B., & Gupta, S. K. (2001). Simultaneous carbon and nitrogen removal in a mixed culture aerobic RBC biofilm. Water Research, 35, 1714–1722.

    Article  CAS  Google Scholar 

  • Hallin, S., & Pell, M. (1998). Metabolic properties of denitrifying bacteria adapting to methanol and ethanol in activated sludge. Water Research, 32, 13–18.

    Article  CAS  Google Scholar 

  • Hanaki, K., Hong, Z., & Mstsuo, T. (1992). Production of nitrous oxide gas during denitrification of wastewater. Water Science and Technology, 26, 1027–1036.

    Article  CAS  Google Scholar 

  • Hellinga, C., Schellen, A. A. J. C., Mulder, J. W., van Loosdrecht, M. C. M., & Heijnen, J. J. (1998). The SHARON process: An innovative method for nitrogen removal from ammonium-rich waste water. Water Science and Technology, 37, 135–142.

    Article  CAS  Google Scholar 

  • Hu, Z., Zhang, J., Xie, H., Li, S., Wang, H., & Zhang, T. (2011). Effect of anoxic/aerobic phase fraction on N2O emission in a sequencing batch reactor under low temperature. Bioresource Technology, 102, 5486–5491.

    Article  CAS  Google Scholar 

  • Huang, X. F., Li, W. G., Zhang, D. Y., & Qin, W. (2013). Ammonium removal by a novel oligotrophic Acinetobacter sp. Y16 capable of heterotrophic nitrification–aerobic denitrification at low temperature. Bioresource Technology, 146, 44–50.

    Article  CAS  Google Scholar 

  • Hynes, R. K., & Knowles, R. (1984). Production of nitrous oxide by Nitrosomonas europaea: Effects of acetylene, pH, and oxygen. Canadian Journal of Microbiology, 30, 1397–1404.

    Article  CAS  Google Scholar 

  • Ikeda-Ohtsubo, W., Miyahara, M., Kim, S. W., Yamada, T., Matsuoka, M., Watanabe, A., Fushinobu, S., Wakagi, T., Shoun, H., Miyauchi, K., & Endo, G. (2013). Bioaugmentation of a wastewater bioreactor system with the nitrous oxide-reducing denitrifier Pseudomonas stutzeri strain TR2. Journal of Bioscience and Bioengineering, 115, 37–42.

    Article  CAS  Google Scholar 

  • IPCC. (2007). Climate change 2007: Synthesis report. In Core Writing Team, R. K. Pachauri, & A. Reisinger (Eds.), Contribution of Working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. Geneva: IPCC.

    Google Scholar 

  • Itokawa, H., Hanaki, K., & Matsuo, T. (2001). Nitrous oxide production in high-loading biological nitrogen removal process under low COD/N ratio condition. Water Research, 35, 657–664.

    Article  CAS  Google Scholar 

  • Jia, W., Liang, S., Zhang, J., Ngo, H. H., Guo, W., Yan, Y., & Zou, Y. (2013). Nitrous oxide emission in low-oxygen simultaneous nitrification and denitrification process: Sources and mechanisms. Bioresource Technology, 136, 444–451.

    Article  CAS  Google Scholar 

  • Joo, H. S., Hirai, M., & Shoda, M. (2006). Piggery wastewater treatment using Alcaligenes faecalis No. 4 with heterotrophic nitrification and aerobic denitrification. Water Research, 40, 3029–3026.

    Article  CAS  Google Scholar 

  • Joss, A., Salzgeber, D., Eugster, J., & Konig, R. (2009). Full-scale nitrogen removal from digester liquid with partial nitration and anammox in one SBR. Environmental Science and Technology, 43, 5301–5306.

    Article  CAS  Google Scholar 

  • Kampschreur, M. J., Tan, N. C., Kleerebezem, R., Picioreanu, C., Jetten, M. S. M., & Van Loosdrecht, M. C. M. (2008a). Effect of dynamic process conditions on nitrogen oxide emission from a nitrifying culture. Environmental Science and Technology, 42, 429–435.

    Article  CAS  Google Scholar 

  • Kampschreur, M. J., van der Star, W. R. L., Wielders, H. A., Mulder, J. W., Jetten, M. S. M., & van Loosdrecht, M. C. M. (2008b). Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment. Water Research, 42, 812–826.

    Article  CAS  Google Scholar 

  • Kampschreur, M. J., Poldermans, R., Kleerebezem, R., van der Star, W. R., Haarhuis, R., Abma, W. R., Jetten, M. S., Jetten, M. S., & van Loosdrecht, M. C. (2009). Emission of nitrous oxide and nitric oxide from a full-scale single-stage nitritation-anammox reactor. Water Science and Technology, 60, 3211–3217.

    Article  CAS  Google Scholar 

  • Kester, R. A., De Boer, W., & Laanbroek, H. J. (1997). Production of NO and N2O by pure cultures of nitrifying and denitrifying bacteria during changes in aeration. Applied and Environmental Microbiology, 63, 3872–3877.

    CAS  Google Scholar 

  • Kim, E. W., & Bae, J. H. (2000). Alkalinity requirements and the possibility of simultaneous heterotrophic denitrification during sulfurutilizing autotrophic denitrification. Water Science and Technology, 42, 233–238.

    Article  CAS  Google Scholar 

  • Kim, S. W., Miyahara, M., Fushinobu, S., Wakagi, T., & Shoun, H. (2010). Nitrous oxide emission from nitrifying activated sludge dependent on denitrification by ammonia-oxidizing bacteria. Bioresource Technology, 101, 3958–3963.

    Article  CAS  Google Scholar 

  • Kimochi, Y., Inamori, Y., Mizuochi, M., Xu, K. Q., & Matsumura, M. (1998). Nitrogen removal and N2O emission in a full-scale domestic wastewater treatment plant with intermittent aeration. Journal of Fermentation and Bioengineering, 86, 202–206.

    Article  CAS  Google Scholar 

  • Konneke, M., Bernhard, A. E., de la Torre, J. R., Walker Christopher, B., Waterbury, J. B., & Stahl, D. A. (2005). Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 437, 543–546.

    Article  CAS  Google Scholar 

  • Korner, H., & Zumft, W. G. (1989). Expression of denitrification enzymes in response to the dissolved oxygen level and respiratory substrate in continuous culture of Pseudomonas stutzeri. Applied and Environment Microbiology, 55, 1670–1676.

    CAS  Google Scholar 

  • Kshirsagar, M., Gupta, A. B., & Gupta, S. K. (1995). Aerobic denitrification studies on activated sludge mixed with Thiosphaera pantotropha. Environmental Technology, 16, 35–43.

    Article  CAS  Google Scholar 

  • Kundu, P., Pramanik, A., Dasgupta, A., Mukherjee, S., & Mukherjee, J. (2014). Simultaneous heterotrophic nitrification and aerobic denitrification by Chryseobacterium sp. R31 isolated from abattoir wastewater. BioMed Research International, 4, 436056.

    Google Scholar 

  • Law, Y., Lant, P., & Yuan, Z. (2011). The effect of pH on N2O production under aerobic conditions in a partial nitritation system. Water Research, 45, 5934–5944.

    Article  CAS  Google Scholar 

  • Law, Y., Ni, B. J., Lant, P., & Yuan, Z. (2012). N2O production rate of an enriched ammonia-oxidising bacteria culture exponentially correlates to its ammonia oxidation rate. Water Research, 46, 3409–3419.

    Article  CAS  Google Scholar 

  • Lemaire, R., Meyer, R., Taske, A., Crocetti, G. R., Keller, J., & Yuan, Z. (2006). Identifying causes for N2O accumulation in a lab-scale sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal. Journal of Biotechnology, 122, 62–72.

    Article  CAS  Google Scholar 

  • Liang, H., Yang, J., & Gao, D. (2014). N2O emission from nitrogen removal via nitrite in oxic-anoxic granular sludge sequencing batch reactor. Jounal of Environmental Science, 26, 537–541.

    Article  CAS  Google Scholar 

  • Lloyd, D. (1993). Aerobic denitrification in soils and sediments - from fallacies to facts. Trends in Ecology and Evolution, 8, 352–356.

    Article  CAS  Google Scholar 

  • Lopez-Vazquez, C. M., Oehmen, A., Hooijmans, C. M., Brdjanovic, D., Gijzen, H. J., Yuan, Z., & van Loosdrecht, M. C. M. (2009). Modeling the PAO-GAO competition: Effects of carbon source, pH and temperature. Water Research, 43, 450–462.

    Article  CAS  Google Scholar 

  • Lotito, A. M., Wunderlin, P., Joss, A., Kipf, M., & Siegrist, H. (2012). Nitrous oxide emissions from the oxidation tank of a pilot activated sludge plant. Water Research, 46, 3563–3573.

    Article  CAS  Google Scholar 

  • Lu, H. J., & Kartik, C. (2010). Factors promoting emissions of nitrous oxide and nitric oxide from denitrifying sequencing batch reactors operated with methanol and ethanol as electron donors. Biotechnology and Bioengineering, 106, 390–3981.

    CAS  Google Scholar 

  • Miyahara, M., Kim, S. W., Fushinobu, S., Takaki, K., Yamada, T., Watanabe, A., Miyauchi, K., & Endo, G. (2010). Potential of aerobic denitrification by Pseudomonas stutzeri TR2 to reduce nitrous oxide emissions from wastewater treatment plants. Applied and Environmental Microbiology, 76, 4619–4625.

    Article  CAS  Google Scholar 

  • Moir, J. W., Baratta, D., Richardson, D. J., & Ferguson, S. J. (1993). The purification of a cd1-type nitrite reductase from, and the absence of a copper-type nitrite reductase from, the aerobic denitrifier Thiosphaera pantotropha; the role of pseudoazurin as an electron donor. European Journal of Biochemistry, 212, 377–385.

    Article  CAS  Google Scholar 

  • Mulder, A., van de Graaf, A. A., Robertson, L. A., & Kuenen, J. G. (1995). Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiology Ecology, 16, 177–183.

    Article  CAS  Google Scholar 

  • Murnleitner, E., Kuba, T., Van Loosdrecht, M. C. M., & Heijnen, J. J. (1997). An integrated metabolic model for the aerobic and denitrifying biological phosphorus removal. Biotechnology and Bioengineering, 54, 434–450.

    Article  CAS  Google Scholar 

  • Noda, N., Kaneko, N., Mikami, M., Kimochi, Y., Tsuneda, S., Hirata, A., Mizuochi, M., & Inamori, Y. (2003). Effects of SRT and DO on N2O reductase activity in an anoxic-oxic activated sludge system. Water Science and Technology, 48, 363–370.

    Article  CAS  Google Scholar 

  • Osada, T., Kuroda, K., & Yonaga, M. (1995). Reducing nitrous oxide gas emissions from fill-and-draw type activated sludge process. Water Research, 29, 1607–1608.

    Article  CAS  Google Scholar 

  • Otte, S., Grobben, N. G., Robertson, L. A., Jetten, M. S., & Kuenen, J. G. (1996). Nitrous oxide production by Alcaligenes faecalis under transient and dynamic aerobic and anaerobic conditions. Applied and Environmental Microbiology, 62, 2421–2426.

    CAS  Google Scholar 

  • Papen, H., von Berg, R., Hinkel, I., Thoene, B., & Rennenberg, H. (1989). Heterotrophic nitrification by Alcaligenes faecalis: NO2-, NO3-, N2O, and NO production in exponentially growing cultures. Applied and Environmental Microbiology, 55, 2068–2072.

    Google Scholar 

  • Park, K. Y., Inamori, Y., Mizuochi, M., & Ahn, K. H. (2000). Emission and control of nitrous oxide from a biological wastewater treatment system with intermittent aeration. Journal of Bioscience and Bioengineering, 90, 247–252.

    Article  CAS  Google Scholar 

  • Park, H. D., Wells, G. F., Bae, H., Criddle, C. S., & Francis, C. A. (2006). Occurrence of ammonia-oxidizing Archaea in wastewater treatment plant bioreactors. Applied and Environmental Microbiology, 72, 5643–5647.

    Article  CAS  Google Scholar 

  • Park, K. Y., Kim, S. J., Jung, J. Y., & Lee, S. H. (2007). Reduction of N2O emission from biological nitrogen removal processes by Alcaligenes faecalis augmentation. Journal of Industrial and Engineering Chemistry, 13, 508–511.

    CAS  Google Scholar 

  • Patureau, D., Bernet, N., Delgenes, J. P., & Moletta, R. (2000). Effect of dissolved oxygen and carbon nitrogen loads on denitrification by an aerobic consortium. Applied Microbiology and Biotechnology, 54, 535–542.

    Article  CAS  Google Scholar 

  • Pellicer-Nàcher, C., Sun, S., Lackner, S., Terada, A., Schreiber, F., Zhou, Q., & Smets, B. F. (2010). Sequential aeration of membrane-aerated biofilm reactors for high-rate autotrophic nitrogen removal: Experimental demonstration. Environmental Science and Technology, 44, 7628–7634.

    Article  CAS  Google Scholar 

  • Philippot, L., Mirleau, P., Mazurier, S., Siblot, S., Hartmann, A., Lemanceau, P., & Germon, J. C. (2001). Characterization and transcriptional analysis of Pseudomonas fluorescens denitrifying clusters containing the nar, nir, nor and nos genes. Biochimica et Biophysica Acta, 1517, 436–440.

    Article  CAS  Google Scholar 

  • Pijuan, M., Torà, J., Rodríguez-Caballero, A., César, E., Carrera, J., & Pérez, J. (2014). Effect of process parameters and operational mode on nitrous oxide emissions from a nitritation reactor treating reject wastewater. Water Research, 49, 23–33.

    Article  CAS  Google Scholar 

  • Poth, M., & Focht, D. (1985). 15N Kinetic analysis of N2O production by Nitrosomonas europaea: An examination of nitrifier denitrification. Applied and Environmental Microbiology, 49, 1134–1141.

    CAS  Google Scholar 

  • Poughon, L., Dussap, C. G., & Gros, J. B. (2001). Energy model and metabolic flux analysis for autotrophic nitrifiers. Biotechnology and Bioengineering, 72, 416–433.

    Article  CAS  Google Scholar 

  • Quan, X., Zhang, M., Lawlor, P. G., Yang, Z., & Zhan, X. (2012). Nitrous oxide emission and nutrient removal in aerobic granular sludge sequencing batch reactors. Water Research, 46, 4981–4990.

    Article  CAS  Google Scholar 

  • Ravishankara, A. R., Daniel, J. S., & Portmann, R. W. (2009). Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science, 326, 123–125.

    Article  CAS  Google Scholar 

  • Robertson, L. A., & Kuenen, J. G. (1984). Aerobic denitrification: A controversy revived. Archives of Microbiology, 139, 351–354.

    Article  CAS  Google Scholar 

  • Robertson, L. A., Van Niel, E. W. J., Torremans, T. A. M., & Kuenen, J. G. (1988). Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha. Applied and Environmental Microbiology, 54, 2812–2818.

    CAS  Google Scholar 

  • Santoro, A. E., Buchwald, C., Mcllvin, M. R., & Casciotti, K. (2011). Isotopic signature of N2O produced by marine ammonia-oxidizing archaea. Science, 333, 1282–1285.

    Article  CAS  Google Scholar 

  • Schalk-Otte, S., Seviour, R. J., Kuenen, J. G., & Jetten, M. S. M. (2000). Nitrous oxide (N2O) production by Alcaligenes faecalis during feast and famine regimes. Water Research, 34, 2080–2088.

    Article  CAS  Google Scholar 

  • Schmidt, I., Sliekers, O., Schmid, M., Bock, E., Fuerst, J., Kuenen, J. G., Jetten, M. S., & Strous, M. (2003). New concepts of microbial treatment processes for the nitrogen removal in wastewater. FEMS Microbiology Reviews, 27, 481–492.

    Article  CAS  Google Scholar 

  • Schonharting, B., Rehner, R., Metzger, J. W., Krauth, K., & Rizzi, M. (1998). Release of nitrous oxide (N2O) from denitrifying activated sludge caused by H2S-containing wastewater: Quantification and application of a new mathematical model. Water Science and Technology, 38, 237–246.

    Article  CAS  Google Scholar 

  • Schulthess, R. V., Wild, D., & Gujer, W. (1994). Nitric and nitrous oxides from denitrifying activated sludge at low oxygen concentration. Water Science and Technology, 30, 123–132.

    Article  CAS  Google Scholar 

  • Sears, H. J., Sawers, G., Berks, B. C., Ferguson, S. J., & Richardson, D. J. (2000). Control of periplasmic nitrate reductase gene expression (napEDABC) from Paracoccus pantotrophus in response to oxygen and carbon substrates. Microbiology, 146, 2977–2985.

    Article  CAS  Google Scholar 

  • Shiskowski, D. M., & Mavinic, D. S. (2006). The influence of nitrite and pH (nitrous acid) on aerobic-phase, autotrophic N2O generation in a wastewater treatment bioreactor. Journal of Environmental Engineering Science, 5, 273–283.

    Article  CAS  Google Scholar 

  • Sommer, J., Ciplak, A., Sumer, E., Benckiser, G., & Ottow, J. C. G. (1998). Quantification of emitted and retained N2O in a municipal wastewater treatment plant with activated sludge and nitrification-denitrification units. Agrobiological Research, 51, 59–73.

    CAS  Google Scholar 

  • Sumer, E., Weiske, A., Benckiser, G., & Ottow, J. C. G. (1995). Influence of environmental conditions on the amount of N2O released from activated sludge in a domestic waste water treatment plant. Cellular and Molecular Life Sciences, 51, 419–422.

    Article  Google Scholar 

  • Sun, S., Cheng, X., & Sun, D. (2013). Emission of N2O from a full-scale sequencing batch reactor wastewater treatment plant: Characteristics and influencing factors. International Biodeterioration & Biodegradation, 85, 545–549.

    Article  CAS  Google Scholar 

  • Sun, Y., Li, A., Zhang, X., & Ma, F. (2015). Regulation of dissolved oxygen from accumulated nitrite during the heterotrophic nitrification and aerobic denitrification of Pseudomonas stutzeri T13. Applied Microbiology and Biotechnology, 99, 3243–3248.

    Article  CAS  Google Scholar 

  • Sutka, R. L., Ostrom, N. E., Ostrom, P. H., Breznak, J. A., Gandhi, H., Pitt, A. J., & Li, F. (2006). Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances. Applied and Environmental Microbiology, 72, 638–644.

    Article  CAS  Google Scholar 

  • Suzuki, I., Dular, U., & Kwok, S. C. (1974). Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas europaea cells and extracts. Journal of Bacteriology, 120, 556–558.

    CAS  Google Scholar 

  • Tabrez Khan, S., & Hiraishi, A. (2001). Isolation and characterization of a new poly(3-hydroxybutyrate)-degrading, denitrifying bacterium from activated sludge. FEMS Microbiology Letters, 205, 253–257.

    Article  CAS  Google Scholar 

  • Takaya, N., Catalan-Sakairi, M. A., Sakaguchi, Y., Kato, I., Zhou, Z., & Shoun, H. (2003). Aerobic denitrifying bacteria that produce low levels of nitrous oxide. Applied and Environmental Microbiology, 69, 3152–3157.

    Article  CAS  Google Scholar 

  • Tallec, G., Garnier, J., Billen, G., & Gousailles, M. (2006). Nitrous oxide emissions from secondary activated sludge in nitrifying conditions of urban wastewater treatment plants: Effect of oxygenation level. Water Research, 40, 2972–2980.

    Article  CAS  Google Scholar 

  • Tallec, G., Garnier, J., Billen, G., & Gousailles, M. (2008). Nitrous oxide emissions from denitrifying activated sludge of urban wastewater treatment plants, under anoxia and low oxygenation. Bioresource Technology, 99, 2200–2209.

    Article  CAS  Google Scholar 

  • Thorn, M., & Sorensson, F. (1996). Variation of nitrous oxide formation in the denitrification basin in a wastewater treatment plant with nitrogen removal. Water Research, 30, 1543–1547.

    Article  Google Scholar 

  • Tsuneda, S., Mikami, M., Kimochi, Y., & Hirata, A. (2005). Effect of salinity on nitrous oxide emission in the biological nitrogen removal process for industrial wastewater. Journal of Hazardous Materials, 119, 93–98.

    Article  CAS  Google Scholar 

  • Vadivelu, V. M., Yuan, Z., Fux, C., & Keller, J. (2006). The inhibitory effects of free nitrous acid on the energy generation and growth processes of an enriched Nitrobacter culture. Environmental Science and Technology, 40, 4442–4448.

    Article  CAS  Google Scholar 

  • Vadivelu, V. M., Keller, J., & Yuan, Z. (2007). Effect of free ammonia on the respiration and growth processes of an enriched Nitrobacter culture. Water Research, 41, 826–834.

    Article  CAS  Google Scholar 

  • Van Cleemput, O. (1998). Subsoils: Chemo- and biological denitrification, N2O and N2 emissions. Nutrient Cycling in Agroecosystems, 52, 187–194.

    Article  Google Scholar 

  • Van Loosdrecht, M. C. M., Pot, M. A., & Heijnen, J. J. (1997). Importance of bacterial storage polymers in bioprocesses. Water Science and Technology, 35, 41–47.

    Article  Google Scholar 

  • Van Niel, E. W. J., Arts, P. A. M., Wesselink, B. J., Robertson, L. A., & Kuenen, J. G. (1993). Competition between heterotrophic and autotrophic nitrifiers for ammonia in chemostat cultures. FEMS Microbiology Ecology, 102, 109–118.

    Article  Google Scholar 

  • Wan, C. L., Yang, X., Lee, D. J., Du, M. A., Wan, F., & Chen, C. (2011). Aerobic denitrification by novel isolated strain using NO2 -N as nitrogen source. Bioresource Technology, 102, 7244–7248.

    Article  CAS  Google Scholar 

  • Wang, P., Li, X., Xiang, M., & Zhai, Q. (2007). Characterization of efficient aerobic denitrifiers isolated from two different sequencing batch reactors by 16S-rRNA analysis. Journal of Bioscience and Bioengineering, 103, 563–567.

    Article  CAS  Google Scholar 

  • Wrage, N., Velthol, G. L., van Beusichem, M. L., & Oenema, O. (2001). Role of nitrifier denitrificaiton in the production of nitrous oxide. Role of nitrifier denitrificaiton in the production of nitrous oxide. Soil Biology and Biochemistry, 33, 1723–1732.

    Article  CAS  Google Scholar 

  • Wunderlin, P., Mohn, J., Joss, A., Emmenegger, L., & Siegrist, H. (2012). Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Research, 46, 1027–1037.

    Article  CAS  Google Scholar 

  • Yang, Q., Liu, X., Peng, C., Wang, S., Sun, H., & Peng, Y. (2009). N2O production during nitrogen removal via nitrite from domestic wastewater: Main sources and control method. Environmental Science and Technology, 43, 9400–9406.

    Article  CAS  Google Scholar 

  • Yang, X. P., Wang, S. M., Zhang, D. W., & Zhou, L. X. (2011). Isolation and nitrogen removal characteristics of an aerobic heterotrophic nitrifying-denitrifying bacterium, Bacillus subtilis A1. Bioresource Technology, 102, 854–862.

    Article  CAS  Google Scholar 

  • Yao, S., Ni, J. R., Ma, T., & Li, C. (2013). Heterotrophic nitrification and aerobic denitrification at low temperature by a newly isolated bacterium, Acinetobacter sp. HA2. Bioresource Technology, 139, 80–86.

    Article  CAS  Google Scholar 

  • Ye, L., Ni, B. J., Law, Y., Byers, C., & Yuan, Z. (2014). A novel methodology to quantify nitrous oxide emissions from full-scale wastewater treatment systems with surface aerators. Water Research., 48, 257–268.

    Article  CAS  Google Scholar 

  • Yu, R., Kampschreur, M. J., Loosdrecht, M. C. M. V., & Chandran, K. (2010). Mechanisms and specific directionality of autotrophic nitrous oxide and nitric oxide generation during transient anoxia. Environmental Science and Technology, 44, 1313–1319.

    Article  CAS  Google Scholar 

  • Zeng, R. J., Lemaire, R., Yuan, Z., & Keller, J. (2003). Simultaneous nitrification, denitrification, and phosphorus removal in a lab-scale sequencing batch reactor. Biotechnology Bioengineering, 84, 170–178.

    Article  CAS  Google Scholar 

  • Zhang, T., Shao, M. F., & Ye, L. (2012). 454 pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME Journal, 6, 1137–1147.

    Article  CAS  Google Scholar 

  • Zheng, H., Hanaki, K., & Matsuo, T. (1994). Production of nitrous oxide gas during nitrification of wasterwater. Water Science and Technology, 30, 133–141.

    Article  CAS  Google Scholar 

  • Zhou, Y., Pijuan, M., Zeng, R. J., & Yuan, Z. G. (2008). Free nitrous acid inhibition on nitrous oxide reduction by a denitrifying-enhanced biological phosphorus removal sludge. Environmental Science and Technology, 42, 8260–8265.

    Article  CAS  Google Scholar 

  • Zhu, X., & Chen, Y. (2011). Reduction of N2O and NO generation in anaerobic-aerobic (low dissolved oxygen) biological wastewater treatment process by using sludge alkaline fermentation liquid. Environmental Science and Technology, 45, 2137–2143.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zheng, M. (2019). Introduction. In: Nitrogen Removal Characteristics of Aerobic Denitrifying Bacteria and Their Applications in Nitrogen Oxides Emission Mitigation. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-2432-1_1

Download citation

Publish with us

Policies and ethics