Parameter Estimation for Nonlinear Mathematical Model

Part of the Springer Theses book series (Springer Theses)


In this chapter, parameters are estimated for mathematical models of physiology, using glucose sensor data of free-living patients, who live their normal lifestyle of activities and meals, and are not in a clinical setting.


Free-living Patients Glucose Sensor Data lmFit Function Virtual Patient Intravenous Glucose Tolerance Test (IVGTT) 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    E. Carson, C. Cobelli, Modelling Methodology for Physiology and Medicine, ser (Academic Press Series in Biomedical Engineering, Elsevier Science, 2001)Google Scholar
  2. 2.
    E. Dassau, F. Cameron, H. Lee, B.W. Bequette, H. Zisser, L. Jovanovic, H.P. Chase, D.M. Wilson, B.A. Buckingham, F.J. Doyle, Real-time hypoglycemia prediction suite using continuous glucose monitoring: a safety net for the artificial pancreas. Diabetes Care 33(6), 1249–1254 (2010)CrossRefGoogle Scholar
  3. 3.
    F. Cameron, G. Niemeyer, K. Gundy-Burlet, B. Buckingham, Statistical hypoglycemia prediction. J. Diabetes Sci. Technol. 2(4), 612–621 (2008)CrossRefGoogle Scholar
  4. 4.
    G. Sparacino, F. Zanderigo, S. Corazza, A. Maran, A. Facchinetti, C. Cobelli, Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series. IEEE Trans. Biomed. Eng. 54(5), 931–937 (2007)CrossRefGoogle Scholar
  5. 5.
    M. Eren-Oruklu, A. Cinar, L. Quinn, D. Smith, Estimation of future glucose concentrations with subject-specific recursive linear models. Diabetes Technol. Therap. 11(4), 243–253 (2009)CrossRefGoogle Scholar
  6. 6.
    Q. Wang, P. Molenaar, S. Harsh, K. Freeman, J. Xie, C. Gold, M. Rovine, J. Ulbrecht, Personalized state-space modeling of glucose dynamics for type 1 diabetes using continuously monitored glucose, insulin dose, and meal intake: An extended kalman filter approach. J. Diabetes Sci. Technol. 8(2), 331–345 (2014)CrossRefGoogle Scholar
  7. 7.
    L. Magni, M. Forgione, C. Toffanin, C. Dalla Man, B. Kovatchev, G. De Nicolao, C. Cobelli, Run-to-run tuning of model predictive control for type 1 diabetes subjects: in silico trial. J. Diabetes Sci. Technol. 3(5), 1091–1098 (2009)CrossRefGoogle Scholar
  8. 8.
    R. Hovorka, V. Canonico, L.J. Chassin, U. Haueter, M. Massi-Benedetti, M. Orsini Federici, T.R. Pieber, H.C. Schaller, L. Schaupp, T. Vering, M.E. Wilinska, Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol. Measure. 25(4), 905–920 (2004)CrossRefGoogle Scholar
  9. 9.
    R.N. Bergman, L.S. Phillips, C. Cobelli, Physiologic evaluation of factors controlling glucose tolerance in man measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose. J. Clin. Invest. 68(6), 1456–1467 (1981)CrossRefGoogle Scholar
  10. 10.
    A. Makroglou, J. Li, Y. Kuang, Mathematical models and software tools for the glucose-insulin regulatory system and diabetes: an overview. Appl. Numer. Math. 56(3), 559–573 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    C. Dalla Man, R.A. Rizza, C. Cobelli, Meal simulation model of the glucose-insulin system. IEEE Trans. Biomed. Eng. 54(10), 1740–1749 (2007)CrossRefGoogle Scholar
  12. 12.
    C. Dalla Man, D.M. Raimondo, R.A. Rizza, C. Cobelli, GIM, simulation software of meal glucose-insulin model. J. Diabetes Sci. Technol. 1(3), 323–330 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations