Design of an Implantable Artificial Pancreas

Part of the Springer Theses book series (Springer Theses)


This chapter presents an overview of the implantable artificial pancreas and its modular components including: (a) scalable micropumps which passively reduce flow rate from the micropump enabling flow reduction of up to 20 times, (b) the insulin reservoir which minimizes the probability of air bubbles, if any, leaving the reservoir and (c) two fluidic flow connections which integrate blood glucose sensing and drug delivery.


Implantable Artificial Pancreas Insulin Reservoir Glucose Sensor Insulin Delivery Systems Shunt Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    E.V. Cauter, F. Mestrez, J. Sturis, K.S. Polonsky, Estimation of insulin secretion rates from c-peptide levels: comparison of individual and standard kinetic parameters for c-peptide clearance. Diabetes 41(3), 368–377 (1992)CrossRefGoogle Scholar
  2. 2.
    J.J. Meier, J.D. Veldhuis, P.C. Butler, Pulsatile insulin secretion dictates systemic insulin delivery by regulating hepatic insulin extraction in humans. Diabetes 54(6), 1649–1656 (2005)CrossRefGoogle Scholar
  3. 3.
    C.C. Palerm, H. Zisser, L. Jovanovic̆, F.J. Doyle, A run-to-run control strategy to adjust basal insulin infusion rates in type 1 diabetes. J. Process Control 18(3–4), 258–265 (2008)CrossRefGoogle Scholar
  4. 4.
    D.A. Gough, L.S. Kumosa, T.L. Routh, J.T. Lin, J.Y. Lucisano, Function of an implanted tissue glucose sensor for more than 1 year in animals. Sci. Transl. Med. 2(42) (2010)CrossRefGoogle Scholar
  5. 5.
    H. Shibata, Y.J. Heo, T. Okitsu, Y. Matsunaga, T. Kawanishi, S. Takeuchi, Injectable hydrogel microbeads for fluorescence-based in vivo continuous glucose monitoring, in Proceedings of the National Academy of Sciences (2010)Google Scholar
  6. 6.
    D.J. Laser, J.G. Santiago, A review of micropumps. J. Micromech. Microeng. 14(6), R35 (2004)CrossRefGoogle Scholar
  7. 7.
    C. Cobelli, C.D. Man, G. Sparacino, L. Magni, G.D. Nicolao, B.P. Kovatchev, Diabetes models signals and control. IEEE Rev. Biomed. Eng. 2, 54–96 (2009)CrossRefGoogle Scholar
  8. 8.
    L.G. Bleris, J. Garcia, M.V. Kothare, M.G. Arnold, Towards embedded model predictive control for system-on-a-chip applications. J. Process Control 16(3), 255–264 (2006)CrossRefGoogle Scholar
  9. 9.
    K.V. Ling, S.P. Yue, J.M. Maciejowski, A FPGA implementation of model predictive control, in 2006 American Control Conference (Minneapolis, MN, USA, Jun 2006), pp. 1930–1935Google Scholar
  10. 10.
    L.G. Bleris, P.D. Vouzis, M.G. Arnold, M.V. Kothare, A co-processor FPGA platform for the implementation of real-time model predictive control, in 2006 American Control Conference (Minneapolis, MN, USA, Jun 2006), pp. 1912–1917Google Scholar
  11. 11.
    K. Basterretxea, K. Benkrid, Embedded high-speed model predictive controller on a FPGA, in 2011 NASA/ESA Conference on Adaptive Hardware and Systems (San Diego, CA, USA, Jun 2011), pp. 327–335Google Scholar
  12. 12.
    L. Bleris, M. Kothare, Real-time implementation of model predictive control, in 2005 American Control Conference, vol. 6 (Portland, OR, USA, Aug 2005), pp. 4166–4171Google Scholar
  13. 13.
    L.G. Bleris, M.V. Kothare, Implementation of model predictive control for glucose regulation on a general purpose microprocessor, in Proceedings of the 44th IEEE Conference on Decision and Control (Seville, Spain, Dec 2005), pp. 5162–5167Google Scholar
  14. 14.
    A.K. Abbes, F. Bouani, M. Ksouri, A microcontroller implementation of constrained model predictive control. Int. J. Electr. Electr. Eng. 5(3), 199–206 (2006)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations