Advertisement

Review on Structure-Based Errors of Parallel Kinematic Machines in Comparison with Traditional NC Machines

Conference paper
  • 9 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 923)

Abstract

Machining technology is developed with increasing flexibility to adapt to the rapid changes of the market. Parallel kinematic machines (PKMs) have demonstrated great flexibility to suit the demands, but it is still not possible to achieve as high accuracy as the traditional NC machines (TNCMs). This paper presents a general review on the structure-based errors of PKMs in comparison with TNCMs to reveal the root causes of the errors and their relevance to the machining uncertainty. The geometric/kinematic, gravitational, and thermal aspects in both TNCMs and PKMs are identified as structure-based error sources. Errors in each aspect are comparatively analyzed, and inherent differences are found to bring new challenges to the accuracy of PKMs. Finally, perspectives in each aspect are highlighted for accuracy improvement of PKMs.

Keywords

Parallel kinematic machine Geometric/kinematic Gravitational Thermal Error 

Notes

Acknowledgments

It is supported by EPSRC UK under project EP/P025447/1, EP/P026087/1, and EU H2020 RISE 2016 - ECSASDPE 734272 project.

References

  1. 1.
    Chryssolouris, G.: Manufacturing Systems: Theory and Practice. Springer, New York (2006).  https://doi.org/10.1007/0-387-28431-1CrossRefGoogle Scholar
  2. 2.
    Gadalla, M., Xue, D.: Recent advances in research on reconfigurable machine tools: a literature review. Int. J. Prod. Res. 55, 1440–1454 (2017)CrossRefGoogle Scholar
  3. 3.
    Neugebauer, R., Harzbecker, C., Drossel, W.G., et al.: Parallel Kinematic Structures in Manufacturing. Dev Methods Appl Exp Parallel Kinematics. Fraunhofer Institute for Machine Tools and Forming Technology IWU, Chemnitz, Germany, pp. 17–47 (2002)Google Scholar
  4. 4.
    Gao, Z., Zhang, D., Member, S.: Performance analysis, mapping, and multiobjective optimization of a hybrid robotic machine tool. IEEE Trans. Ind. Electron. 62, 423–433 (2015)CrossRefGoogle Scholar
  5. 5.
    Boër, C.R., Molinari-Tosatti, L., Smith, K.S.: Parallel Kinematic Machines: Theoretical Aspects and Industrial Requirements. Springer, London (2012).  https://doi.org/10.1007/978-1-4471-0885-6CrossRefGoogle Scholar
  6. 6.
    Webb, P: Automated aerospace manufacture and assembly. Encycl. Aerosp. Eng. 1–10 (2010)Google Scholar
  7. 7.
    Weck, M., Staimer, D.: Parallel kinematic machine tools - current state and future potentials. CIRP Ann. Manuf. Technol. 51, 671–683 (2002)CrossRefGoogle Scholar
  8. 8.
    Neumann, K.-E.: Parallel Kinematical Machine. US Patent 8783127 (2014)Google Scholar
  9. 9.
    Neumann, K.-E.: Robot. US Patent 4732525 (1988)Google Scholar
  10. 10.
    Hennes, N., Staimer, D.: Application of PKM in aerospace manufacturing-high performance machining centers ECOSPEED, ECOSPEED-F and ECOLINER. In: Proceedings of the 4th Chemnitz Parallel Kinematics Seminar, pp. 557–577 (2004)Google Scholar
  11. 11.
    Ni, Y., Zhang, B., Sun, Y., Zhang, Y.: Accuracy analysis and design of A3 parallel spindle head. Chin. J. Mech. Eng. 29, 239–249 (2016)CrossRefGoogle Scholar
  12. 12.
    Jin, Y., Mctoal, P., Higgins, C., et al.: Parallel kinematic assisted automated aircraft assembly. Int. J. Robot. Mech. 3, 89–95 (2014)Google Scholar
  13. 13.
    Neumann, K.-E.: Adaptive In-Jig High Load Exechon Machining Technology & Assembly. SAE Technical Papers 2008-01-2308 (2008)Google Scholar
  14. 14.
    Pandilov, Z., Rall, K.: Parallel kinematics machine tools: history, present, future. Mech. Eng. Sci. J. 25, 1–46 (2006)Google Scholar
  15. 15.
    Tlusty, J., Ziegert, J., Ridgeway, S.: Fundamental comparison of the use of serial and parallel kinematics for machines tools. CIRP Ann. Manuf. Technol. 48, 351–356 (1999)CrossRefGoogle Scholar
  16. 16.
    Geldart, M., Webb, P., Larsson, H., et al.: A direct comparison of the machining performance of a variax 5 axis parallel kinetic machining centre with conventional 3 and 5 axis machine tools. Int. J. Mach. Tools Manuf 43, 1107–1116 (2003)CrossRefGoogle Scholar
  17. 17.
    Jia, Z., Ma, J., Song, D., et al.: A review of contouring-error reduction method in multi-axis CNC machining. Int. J. Mach. Tools Manuf. 125, 34–54 (2018)CrossRefGoogle Scholar
  18. 18.
    De Lacalle, N.L., Mentxaka, A.L.: Machine Tools for High Performance Machining. Springer, London (2008).  https://doi.org/10.1007/978-1-84800-380-4CrossRefGoogle Scholar
  19. 19.
    Ramesh, R., Mannan, M.A., Poo, A.N.: error compensation in machine tools - a review Part I: geometric, cutting force induced and fixture depend errors. Int. J. Mach. Tools Manuf. 40, 1235–1256 (2000)CrossRefGoogle Scholar
  20. 20.
    Ramesh, R., Mannan, M.A., Poo, A.N.: Error compensation in machine tools - a review Part II: thermal errors. Int. J. Mach. Tools Manuf. 40, 1257–1284 (2000)CrossRefGoogle Scholar
  21. 21.
    Zhang, C., Gao, F., Yan, L.: Thermal error characteristic analysis and modeling for machine tools due to time-varying environmental temperature. Precis. Eng. 47, 231–238 (2017)CrossRefGoogle Scholar
  22. 22.
    Mayr, J., Jedrzejewski, J., Uhlmann, E., et al.: Thermal issues in machine tools. CIRP Ann. Manuf. Technol. 61, 771–791 (2012)CrossRefGoogle Scholar
  23. 23.
    Zhu, S., Ding, G., Qin, S., et al.: Integrated geometric error modeling, identification and compensation of CNC machine tools. Int. J. Mach. Tools Manuf. 52, 24–29 (2012)CrossRefGoogle Scholar
  24. 24.
    Wavering, A.J.: Parallel kinematic machine research at NIST: past, present, and future. In: Boër, C.R., Molinari-Tosatti, L., Smith, K.S. (eds.) Parallel Kinematic Machines, Advanced Manufacturing, pp. 17–31. Springer, London (1999).  https://doi.org/10.1007/978-1-4471-0885-6_2CrossRefGoogle Scholar
  25. 25.
    Majda, P.: Modeling of geometric errors of linear guideway and their influence on joint kinematic error in machine tools. Precis. Eng. 36, 369–378 (2012)CrossRefGoogle Scholar
  26. 26.
    Tian, W., Gao, W., Zhang, D., Huang, T.: A general approach for error modeling of machine tools. Int. J. Mach. Tools Manuf. 79, 17–23 (2014)CrossRefGoogle Scholar
  27. 27.
    Jin, Y., Chen, I.M.: Effects of constraint errors on parallel manipulators with decoupled motion. Mech. Mach. Theory 41, 912–928 (2006)CrossRefGoogle Scholar
  28. 28.
    Knapp, W.: Metrology for parallel kinematic machine tools (PKM). WIT Trans. Eng. Sci. 44, 77–87 (2003)Google Scholar
  29. 29.
    Jin, Y., Chanal, H., Paccot, F.: Parallel robot. In: Nee, A. (ed.) Handbook of Manufacturing Engineering and Technology, pp. 1–33. Springer, London (2013).  https://doi.org/10.1007/978-1-4471-4976-7_99-1CrossRefGoogle Scholar
  30. 30.
    Bi, Z.M., Jin, Y.: Kinematic modeling of exechon parallel kinematic machine. Robot. Comput. Integr. Manuf. 27, 186–193 (2011)CrossRefGoogle Scholar
  31. 31.
    Pandilov, Z.: dominant types of errors at parallel kinematics machine tools. FME Trans. 45, 491–495 (2017)CrossRefGoogle Scholar
  32. 32.
    Lian, B., Sun, T., Song, Y., et al.: Stiffness analysis and experiment of a novel 5-DOF parallel kinematic machine considering gravitational effects. Int. J. Mach. Tools Manuf. 95, 82–96 (2015)CrossRefGoogle Scholar
  33. 33.
    Ibaraki, S., Okuda, T., Kakino, Y., et al.: Compensation of gravity-induced errors on a hexapod-type parallel kinematic machine tool. JSME Int J., Ser. C 47, 160–167 (2004)CrossRefGoogle Scholar
  34. 34.
    Girsang, I.P.: Handbook of Manufacturing Engineering and Technology (2015)Google Scholar
  35. 35.
    Landers, R.G., Min, B., Koren, Y.: Reconfigurable machine tools. CIRP Ann. Manuf. Technol. 50, 1–6 (2001)CrossRefGoogle Scholar
  36. 36.
  37. 37.
    Li, Z., Katz, R.: A reconfigurable parallel kinematic drilling machine and its motion planning. Int. J. Comput. Integr. Manuf. 18, 610–614 (2005)CrossRefGoogle Scholar
  38. 38.
    Bi, Z.M.: Development and control of a 5-axis reconfigurable machine tool. J. Robot. 2011, 1–9 (2011)CrossRefGoogle Scholar
  39. 39.
    Olarra, A., Axinte, D., Uriarte, L., Bueno, R.: Machining with the WalkingHex: a walking parallel kinematic machine tool for in situ operations. CIRP Ann. Manuf. Technol. 66, 361–364 (2017)CrossRefGoogle Scholar
  40. 40.
    Pan, Y., Gao, F.: A new six-parallel-legged walking robot for drilling holes on the fuselage. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 228, 753–764 (2014)CrossRefGoogle Scholar
  41. 41.
    Huang, T., Li, M., Zhao, X.M., et al.: Conceptual design and dimensional synthesis for a 3-DOF module of the trivariant - a novel 5-DOF reconfigurable hybrid robot. IEEE Trans. Robot. 21, 449–456 (2005)CrossRefGoogle Scholar
  42. 42.
    Neumann, K.-E.: Modular Parallel Kinematics Intelligent Assembly Automation. SAE Technical Papers 2011-01-2534 (2011)Google Scholar
  43. 43.
    Soons, J.A.: Error analysis of a hexapod machine tool. WIT Trans. Eng. Sci. 16, 347–358 (1997)Google Scholar
  44. 44.
    Oiwa, T.: Accuracy improvement of parallel kinematic machine - error compensation system for joints, links and machine frame. In: Proceedings of the 6th International Conference on Mechatronics Technoly, pp. 433–438 (2002)Google Scholar
  45. 45.
    Oiwa, T.: Study on accuracy improvement of parallel kinematic machine (compensation methods for thermal expansion of link and machine frame). In: International Proceedings of Korea-Japan Conference on Positioning Technology (CPT 2002), pp. 1–6 (2002)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.School of Mechanical and Aerospace EngineeringQueen’s University BelfastBelfastUK
  2. 2.School of Innovation and EntrepreneurshipDalian University of TechnologyDalianPeople’s Republic of China
  3. 3.Northern Ireland Technology CentreQueen’s University BelfastBelfastUK

Personalised recommendations