Skip to main content

Review on Structure-Based Errors of Parallel Kinematic Machines in Comparison with Traditional NC Machines

  • 33 Accesses

Part of the Communications in Computer and Information Science book series (CCIS,volume 923)

Abstract

Machining technology is developed with increasing flexibility to adapt to the rapid changes of the market. Parallel kinematic machines (PKMs) have demonstrated great flexibility to suit the demands, but it is still not possible to achieve as high accuracy as the traditional NC machines (TNCMs). This paper presents a general review on the structure-based errors of PKMs in comparison with TNCMs to reveal the root causes of the errors and their relevance to the machining uncertainty. The geometric/kinematic, gravitational, and thermal aspects in both TNCMs and PKMs are identified as structure-based error sources. Errors in each aspect are comparatively analyzed, and inherent differences are found to bring new challenges to the accuracy of PKMs. Finally, perspectives in each aspect are highlighted for accuracy improvement of PKMs.

Keywords

  • Parallel kinematic machine
  • Geometric/kinematic
  • Gravitational
  • Thermal
  • Error

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-13-2396-6_23
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-981-13-2396-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. Chryssolouris, G.: Manufacturing Systems: Theory and Practice. Springer, New York (2006). https://doi.org/10.1007/0-387-28431-1

    CrossRef  Google Scholar 

  2. Gadalla, M., Xue, D.: Recent advances in research on reconfigurable machine tools: a literature review. Int. J. Prod. Res. 55, 1440–1454 (2017)

    CrossRef  Google Scholar 

  3. Neugebauer, R., Harzbecker, C., Drossel, W.G., et al.: Parallel Kinematic Structures in Manufacturing. Dev Methods Appl Exp Parallel Kinematics. Fraunhofer Institute for Machine Tools and Forming Technology IWU, Chemnitz, Germany, pp. 17–47 (2002)

    Google Scholar 

  4. Gao, Z., Zhang, D., Member, S.: Performance analysis, mapping, and multiobjective optimization of a hybrid robotic machine tool. IEEE Trans. Ind. Electron. 62, 423–433 (2015)

    CrossRef  Google Scholar 

  5. Boër, C.R., Molinari-Tosatti, L., Smith, K.S.: Parallel Kinematic Machines: Theoretical Aspects and Industrial Requirements. Springer, London (2012). https://doi.org/10.1007/978-1-4471-0885-6

    CrossRef  Google Scholar 

  6. Webb, P: Automated aerospace manufacture and assembly. Encycl. Aerosp. Eng. 1–10 (2010)

    Google Scholar 

  7. Weck, M., Staimer, D.: Parallel kinematic machine tools - current state and future potentials. CIRP Ann. Manuf. Technol. 51, 671–683 (2002)

    CrossRef  Google Scholar 

  8. Neumann, K.-E.: Parallel Kinematical Machine. US Patent 8783127 (2014)

    Google Scholar 

  9. Neumann, K.-E.: Robot. US Patent 4732525 (1988)

    Google Scholar 

  10. Hennes, N., Staimer, D.: Application of PKM in aerospace manufacturing-high performance machining centers ECOSPEED, ECOSPEED-F and ECOLINER. In: Proceedings of the 4th Chemnitz Parallel Kinematics Seminar, pp. 557–577 (2004)

    Google Scholar 

  11. Ni, Y., Zhang, B., Sun, Y., Zhang, Y.: Accuracy analysis and design of A3 parallel spindle head. Chin. J. Mech. Eng. 29, 239–249 (2016)

    CrossRef  Google Scholar 

  12. Jin, Y., Mctoal, P., Higgins, C., et al.: Parallel kinematic assisted automated aircraft assembly. Int. J. Robot. Mech. 3, 89–95 (2014)

    Google Scholar 

  13. Neumann, K.-E.: Adaptive In-Jig High Load Exechon Machining Technology & Assembly. SAE Technical Papers 2008-01-2308 (2008)

    Google Scholar 

  14. Pandilov, Z., Rall, K.: Parallel kinematics machine tools: history, present, future. Mech. Eng. Sci. J. 25, 1–46 (2006)

    Google Scholar 

  15. Tlusty, J., Ziegert, J., Ridgeway, S.: Fundamental comparison of the use of serial and parallel kinematics for machines tools. CIRP Ann. Manuf. Technol. 48, 351–356 (1999)

    CrossRef  Google Scholar 

  16. Geldart, M., Webb, P., Larsson, H., et al.: A direct comparison of the machining performance of a variax 5 axis parallel kinetic machining centre with conventional 3 and 5 axis machine tools. Int. J. Mach. Tools Manuf 43, 1107–1116 (2003)

    CrossRef  Google Scholar 

  17. Jia, Z., Ma, J., Song, D., et al.: A review of contouring-error reduction method in multi-axis CNC machining. Int. J. Mach. Tools Manuf. 125, 34–54 (2018)

    CrossRef  Google Scholar 

  18. De Lacalle, N.L., Mentxaka, A.L.: Machine Tools for High Performance Machining. Springer, London (2008). https://doi.org/10.1007/978-1-84800-380-4

    CrossRef  Google Scholar 

  19. Ramesh, R., Mannan, M.A., Poo, A.N.: error compensation in machine tools - a review Part I: geometric, cutting force induced and fixture depend errors. Int. J. Mach. Tools Manuf. 40, 1235–1256 (2000)

    CrossRef  Google Scholar 

  20. Ramesh, R., Mannan, M.A., Poo, A.N.: Error compensation in machine tools - a review Part II: thermal errors. Int. J. Mach. Tools Manuf. 40, 1257–1284 (2000)

    CrossRef  Google Scholar 

  21. Zhang, C., Gao, F., Yan, L.: Thermal error characteristic analysis and modeling for machine tools due to time-varying environmental temperature. Precis. Eng. 47, 231–238 (2017)

    CrossRef  Google Scholar 

  22. Mayr, J., Jedrzejewski, J., Uhlmann, E., et al.: Thermal issues in machine tools. CIRP Ann. Manuf. Technol. 61, 771–791 (2012)

    CrossRef  Google Scholar 

  23. Zhu, S., Ding, G., Qin, S., et al.: Integrated geometric error modeling, identification and compensation of CNC machine tools. Int. J. Mach. Tools Manuf. 52, 24–29 (2012)

    CrossRef  Google Scholar 

  24. Wavering, A.J.: Parallel kinematic machine research at NIST: past, present, and future. In: Boër, C.R., Molinari-Tosatti, L., Smith, K.S. (eds.) Parallel Kinematic Machines, Advanced Manufacturing, pp. 17–31. Springer, London (1999). https://doi.org/10.1007/978-1-4471-0885-6_2

    CrossRef  Google Scholar 

  25. Majda, P.: Modeling of geometric errors of linear guideway and their influence on joint kinematic error in machine tools. Precis. Eng. 36, 369–378 (2012)

    CrossRef  Google Scholar 

  26. Tian, W., Gao, W., Zhang, D., Huang, T.: A general approach for error modeling of machine tools. Int. J. Mach. Tools Manuf. 79, 17–23 (2014)

    CrossRef  Google Scholar 

  27. Jin, Y., Chen, I.M.: Effects of constraint errors on parallel manipulators with decoupled motion. Mech. Mach. Theory 41, 912–928 (2006)

    CrossRef  Google Scholar 

  28. Knapp, W.: Metrology for parallel kinematic machine tools (PKM). WIT Trans. Eng. Sci. 44, 77–87 (2003)

    Google Scholar 

  29. Jin, Y., Chanal, H., Paccot, F.: Parallel robot. In: Nee, A. (ed.) Handbook of Manufacturing Engineering and Technology, pp. 1–33. Springer, London (2013). https://doi.org/10.1007/978-1-4471-4976-7_99-1

    CrossRef  Google Scholar 

  30. Bi, Z.M., Jin, Y.: Kinematic modeling of exechon parallel kinematic machine. Robot. Comput. Integr. Manuf. 27, 186–193 (2011)

    CrossRef  Google Scholar 

  31. Pandilov, Z.: dominant types of errors at parallel kinematics machine tools. FME Trans. 45, 491–495 (2017)

    CrossRef  Google Scholar 

  32. Lian, B., Sun, T., Song, Y., et al.: Stiffness analysis and experiment of a novel 5-DOF parallel kinematic machine considering gravitational effects. Int. J. Mach. Tools Manuf. 95, 82–96 (2015)

    CrossRef  Google Scholar 

  33. Ibaraki, S., Okuda, T., Kakino, Y., et al.: Compensation of gravity-induced errors on a hexapod-type parallel kinematic machine tool. JSME Int J., Ser. C 47, 160–167 (2004)

    CrossRef  Google Scholar 

  34. Girsang, I.P.: Handbook of Manufacturing Engineering and Technology (2015)

    Google Scholar 

  35. Landers, R.G., Min, B., Koren, Y.: Reconfigurable machine tools. CIRP Ann. Manuf. Technol. 50, 1–6 (2001)

    CrossRef  Google Scholar 

  36. http://www.loxin2002.com/fixed-structure-c-frame

  37. Li, Z., Katz, R.: A reconfigurable parallel kinematic drilling machine and its motion planning. Int. J. Comput. Integr. Manuf. 18, 610–614 (2005)

    CrossRef  Google Scholar 

  38. Bi, Z.M.: Development and control of a 5-axis reconfigurable machine tool. J. Robot. 2011, 1–9 (2011)

    CrossRef  Google Scholar 

  39. Olarra, A., Axinte, D., Uriarte, L., Bueno, R.: Machining with the WalkingHex: a walking parallel kinematic machine tool for in situ operations. CIRP Ann. Manuf. Technol. 66, 361–364 (2017)

    CrossRef  Google Scholar 

  40. Pan, Y., Gao, F.: A new six-parallel-legged walking robot for drilling holes on the fuselage. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 228, 753–764 (2014)

    CrossRef  Google Scholar 

  41. Huang, T., Li, M., Zhao, X.M., et al.: Conceptual design and dimensional synthesis for a 3-DOF module of the trivariant - a novel 5-DOF reconfigurable hybrid robot. IEEE Trans. Robot. 21, 449–456 (2005)

    CrossRef  Google Scholar 

  42. Neumann, K.-E.: Modular Parallel Kinematics Intelligent Assembly Automation. SAE Technical Papers 2011-01-2534 (2011)

    Google Scholar 

  43. Soons, J.A.: Error analysis of a hexapod machine tool. WIT Trans. Eng. Sci. 16, 347–358 (1997)

    Google Scholar 

  44. Oiwa, T.: Accuracy improvement of parallel kinematic machine - error compensation system for joints, links and machine frame. In: Proceedings of the 6th International Conference on Mechatronics Technoly, pp. 433–438 (2002)

    Google Scholar 

  45. Oiwa, T.: Study on accuracy improvement of parallel kinematic machine (compensation methods for thermal expansion of link and machine frame). In: International Proceedings of Korea-Japan Conference on Positioning Technology (CPT 2002), pp. 1–6 (2002)

    Google Scholar 

Download references

Acknowledgments

It is supported by EPSRC UK under project EP/P025447/1, EP/P026087/1, and EU H2020 RISE 2016 - ECSASDPE 734272 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Jin .

Editor information

Editors and Affiliations

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Fu, R., Jin, Y., Yang, L., Sun, D., Murphy, A., Higgins, C. (2018). Review on Structure-Based Errors of Parallel Kinematic Machines in Comparison with Traditional NC Machines. In: Wang, S., Price, M., Lim, M., Jin, Y., Luo, Y., Chen, R. (eds) Recent Advances in Intelligent Manufacturing . ICSEE IMIOT 2018 2018. Communications in Computer and Information Science, vol 923. Springer, Singapore. https://doi.org/10.1007/978-981-13-2396-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2396-6_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2395-9

  • Online ISBN: 978-981-13-2396-6

  • eBook Packages: Computer ScienceComputer Science (R0)