Chryssolouris, G.: Manufacturing Systems: Theory and Practice. Springer, New York (2006). https://doi.org/10.1007/0-387-28431-1
CrossRef
Google Scholar
Gadalla, M., Xue, D.: Recent advances in research on reconfigurable machine tools: a literature review. Int. J. Prod. Res. 55, 1440–1454 (2017)
CrossRef
Google Scholar
Neugebauer, R., Harzbecker, C., Drossel, W.G., et al.: Parallel Kinematic Structures in Manufacturing. Dev Methods Appl Exp Parallel Kinematics. Fraunhofer Institute for Machine Tools and Forming Technology IWU, Chemnitz, Germany, pp. 17–47 (2002)
Google Scholar
Gao, Z., Zhang, D., Member, S.: Performance analysis, mapping, and multiobjective optimization of a hybrid robotic machine tool. IEEE Trans. Ind. Electron. 62, 423–433 (2015)
CrossRef
Google Scholar
Boër, C.R., Molinari-Tosatti, L., Smith, K.S.: Parallel Kinematic Machines: Theoretical Aspects and Industrial Requirements. Springer, London (2012). https://doi.org/10.1007/978-1-4471-0885-6
CrossRef
Google Scholar
Webb, P: Automated aerospace manufacture and assembly. Encycl. Aerosp. Eng. 1–10 (2010)
Google Scholar
Weck, M., Staimer, D.: Parallel kinematic machine tools - current state and future potentials. CIRP Ann. Manuf. Technol. 51, 671–683 (2002)
CrossRef
Google Scholar
Neumann, K.-E.: Parallel Kinematical Machine. US Patent 8783127 (2014)
Google Scholar
Neumann, K.-E.: Robot. US Patent 4732525 (1988)
Google Scholar
Hennes, N., Staimer, D.: Application of PKM in aerospace manufacturing-high performance machining centers ECOSPEED, ECOSPEED-F and ECOLINER. In: Proceedings of the 4th Chemnitz Parallel Kinematics Seminar, pp. 557–577 (2004)
Google Scholar
Ni, Y., Zhang, B., Sun, Y., Zhang, Y.: Accuracy analysis and design of A3 parallel spindle head. Chin. J. Mech. Eng. 29, 239–249 (2016)
CrossRef
Google Scholar
Jin, Y., Mctoal, P., Higgins, C., et al.: Parallel kinematic assisted automated aircraft assembly. Int. J. Robot. Mech. 3, 89–95 (2014)
Google Scholar
Neumann, K.-E.: Adaptive In-Jig High Load Exechon Machining Technology & Assembly. SAE Technical Papers 2008-01-2308 (2008)
Google Scholar
Pandilov, Z., Rall, K.: Parallel kinematics machine tools: history, present, future. Mech. Eng. Sci. J. 25, 1–46 (2006)
Google Scholar
Tlusty, J., Ziegert, J., Ridgeway, S.: Fundamental comparison of the use of serial and parallel kinematics for machines tools. CIRP Ann. Manuf. Technol. 48, 351–356 (1999)
CrossRef
Google Scholar
Geldart, M., Webb, P., Larsson, H., et al.: A direct comparison of the machining performance of a variax 5 axis parallel kinetic machining centre with conventional 3 and 5 axis machine tools. Int. J. Mach. Tools Manuf 43, 1107–1116 (2003)
CrossRef
Google Scholar
Jia, Z., Ma, J., Song, D., et al.: A review of contouring-error reduction method in multi-axis CNC machining. Int. J. Mach. Tools Manuf. 125, 34–54 (2018)
CrossRef
Google Scholar
De Lacalle, N.L., Mentxaka, A.L.: Machine Tools for High Performance Machining. Springer, London (2008). https://doi.org/10.1007/978-1-84800-380-4
CrossRef
Google Scholar
Ramesh, R., Mannan, M.A., Poo, A.N.: error compensation in machine tools - a review Part I: geometric, cutting force induced and fixture depend errors. Int. J. Mach. Tools Manuf. 40, 1235–1256 (2000)
CrossRef
Google Scholar
Ramesh, R., Mannan, M.A., Poo, A.N.: Error compensation in machine tools - a review Part II: thermal errors. Int. J. Mach. Tools Manuf. 40, 1257–1284 (2000)
CrossRef
Google Scholar
Zhang, C., Gao, F., Yan, L.: Thermal error characteristic analysis and modeling for machine tools due to time-varying environmental temperature. Precis. Eng. 47, 231–238 (2017)
CrossRef
Google Scholar
Mayr, J., Jedrzejewski, J., Uhlmann, E., et al.: Thermal issues in machine tools. CIRP Ann. Manuf. Technol. 61, 771–791 (2012)
CrossRef
Google Scholar
Zhu, S., Ding, G., Qin, S., et al.: Integrated geometric error modeling, identification and compensation of CNC machine tools. Int. J. Mach. Tools Manuf. 52, 24–29 (2012)
CrossRef
Google Scholar
Wavering, A.J.: Parallel kinematic machine research at NIST: past, present, and future. In: Boër, C.R., Molinari-Tosatti, L., Smith, K.S. (eds.) Parallel Kinematic Machines, Advanced Manufacturing, pp. 17–31. Springer, London (1999). https://doi.org/10.1007/978-1-4471-0885-6_2
CrossRef
Google Scholar
Majda, P.: Modeling of geometric errors of linear guideway and their influence on joint kinematic error in machine tools. Precis. Eng. 36, 369–378 (2012)
CrossRef
Google Scholar
Tian, W., Gao, W., Zhang, D., Huang, T.: A general approach for error modeling of machine tools. Int. J. Mach. Tools Manuf. 79, 17–23 (2014)
CrossRef
Google Scholar
Jin, Y., Chen, I.M.: Effects of constraint errors on parallel manipulators with decoupled motion. Mech. Mach. Theory 41, 912–928 (2006)
CrossRef
Google Scholar
Knapp, W.: Metrology for parallel kinematic machine tools (PKM). WIT Trans. Eng. Sci. 44, 77–87 (2003)
Google Scholar
Jin, Y., Chanal, H., Paccot, F.: Parallel robot. In: Nee, A. (ed.) Handbook of Manufacturing Engineering and Technology, pp. 1–33. Springer, London (2013). https://doi.org/10.1007/978-1-4471-4976-7_99-1
CrossRef
Google Scholar
Bi, Z.M., Jin, Y.: Kinematic modeling of exechon parallel kinematic machine. Robot. Comput. Integr. Manuf. 27, 186–193 (2011)
CrossRef
Google Scholar
Pandilov, Z.: dominant types of errors at parallel kinematics machine tools. FME Trans. 45, 491–495 (2017)
CrossRef
Google Scholar
Lian, B., Sun, T., Song, Y., et al.: Stiffness analysis and experiment of a novel 5-DOF parallel kinematic machine considering gravitational effects. Int. J. Mach. Tools Manuf. 95, 82–96 (2015)
CrossRef
Google Scholar
Ibaraki, S., Okuda, T., Kakino, Y., et al.: Compensation of gravity-induced errors on a hexapod-type parallel kinematic machine tool. JSME Int J., Ser. C 47, 160–167 (2004)
CrossRef
Google Scholar
Girsang, I.P.: Handbook of Manufacturing Engineering and Technology (2015)
Google Scholar
Landers, R.G., Min, B., Koren, Y.: Reconfigurable machine tools. CIRP Ann. Manuf. Technol. 50, 1–6 (2001)
CrossRef
Google Scholar
http://www.loxin2002.com/fixed-structure-c-frame
Li, Z., Katz, R.: A reconfigurable parallel kinematic drilling machine and its motion planning. Int. J. Comput. Integr. Manuf. 18, 610–614 (2005)
CrossRef
Google Scholar
Bi, Z.M.: Development and control of a 5-axis reconfigurable machine tool. J. Robot. 2011, 1–9 (2011)
CrossRef
Google Scholar
Olarra, A., Axinte, D., Uriarte, L., Bueno, R.: Machining with the WalkingHex: a walking parallel kinematic machine tool for in situ operations. CIRP Ann. Manuf. Technol. 66, 361–364 (2017)
CrossRef
Google Scholar
Pan, Y., Gao, F.: A new six-parallel-legged walking robot for drilling holes on the fuselage. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 228, 753–764 (2014)
CrossRef
Google Scholar
Huang, T., Li, M., Zhao, X.M., et al.: Conceptual design and dimensional synthesis for a 3-DOF module of the trivariant - a novel 5-DOF reconfigurable hybrid robot. IEEE Trans. Robot. 21, 449–456 (2005)
CrossRef
Google Scholar
Neumann, K.-E.: Modular Parallel Kinematics Intelligent Assembly Automation. SAE Technical Papers 2011-01-2534 (2011)
Google Scholar
Soons, J.A.: Error analysis of a hexapod machine tool. WIT Trans. Eng. Sci. 16, 347–358 (1997)
Google Scholar
Oiwa, T.: Accuracy improvement of parallel kinematic machine - error compensation system for joints, links and machine frame. In: Proceedings of the 6th International Conference on Mechatronics Technoly, pp. 433–438 (2002)
Google Scholar
Oiwa, T.: Study on accuracy improvement of parallel kinematic machine (compensation methods for thermal expansion of link and machine frame). In: International Proceedings of Korea-Japan Conference on Positioning Technology (CPT 2002), pp. 1–6 (2002)
Google Scholar