Skip to main content

Compressed Sensing and Security

  • Chapter
  • First Online:
Compressed Sensing for Privacy-Preserving Data Processing

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSSIGNAL))

  • 489 Accesses

Abstract

In this chapter we briefly review the Compressed Sensing (CS) framework, discussing the acquisition model, the conditions under which the signal can be recovered, and the main reconstruction algorithms. Then, we show how CS is essentially analogous to a private key cryptosystem if signal acquisition, signal recovery, and sensing matrix generation are interpreted as encryption, decryption, and key generation functions respectively. The basic security properties of this CS cryptosystem under different attack scenarios are discussed according to standard security definitions. This sets the basis for the identification of the attack scenarios that will be analyzed more in depth in Chap. 3. In the second part of this chapter, we introduce the concept of signal embeddings, which can be seen as a generalization of CS measurements. The properties of some of the most common embeddings are briefly reviewed, followed by a discussion on how embeddings can provide privacy-preserving functionalities in particular settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Exact reconstruction is possible if \({\mathbf {x}}\) is k-sparse, as described earlier in this section.

References

  1. Ba, D., Babadi, B., Purdon, P.L., Brown, E.N.: Convergence and stability of iteratively re-weighted least squares algorithms. IEEE Trans. Signal Process. 62(1), 183–195 (2014)

    Article  MathSciNet  Google Scholar 

  2. Baraniuk, R., Davenport, M., DeVore, R., Wakin, M.: A simple proof of the restricted isometry property for random matrices. Constr. Approx. 28(3), 253–263 (2008)

    Article  MathSciNet  Google Scholar 

  3. van den Berg, E., Friedlander, M.P.: SPGL1: A solver for large-scale sparse reconstruction (2007)

    Google Scholar 

  4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The keccak sha-3 submission. Submission to NIST (Round 3) 6(7), 16 (2011)

    Google Scholar 

  5. Bianchi, T., Bioglio, V., Magli, E.: Analysis of one-time random projections for privacy preserving compressed sensing. IEEE Trans. Inf. Forensics Secur. 11(2), 313–327 (2016)

    Article  Google Scholar 

  6. Blumensath, T., Davies, M.E.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009)

    Article  MathSciNet  Google Scholar 

  7. Boufounos, P.T.: Universal rate-efficient scalar quantization. IEEE Trans. Inf. Theory 58(3), 1861–1872 (2012)

    Article  MathSciNet  Google Scholar 

  8. Boufounos, P.T.: Angle-preserving quantized phase embeddings. Wavelets and Sparsity XV, vol. 8858, p. 88581C. International Society for Optics and Photonics, Bellingham (2013)

    Google Scholar 

  9. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends\({\textregistered }\). Mach. Learn. 3(1), 1–122 (2011)

    MATH  Google Scholar 

  10. Cambareri, V., Mangia, M., Pareschi, F., Rovatti, R., Setti, G.: Low-complexity multiclass encryption by compressed sensing. IEEE Trans. Signal Process. 63(9), 2183–2195 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Cambareri, V., Mangia, M., Pareschi, F., Rovatti, R., Setti, G.: On known-plaintext attacks to a compressed sensing-based encryption: a quantitative analysis. IEEE Trans. Inf. Forensics Secur. 10(10), 2182–2195 (2015)

    Article  Google Scholar 

  12. Candès, E.J.: The restricted isometry property and its implications for compressed sensing. Comptes Rendus Mathematique 346(9), 589–592 (2008)

    Article  MathSciNet  Google Scholar 

  13. Candès, E.J., Romberg, J.: L1-magic: recovery of sparse signals via convex programming (2005)

    Google Scholar 

  14. Candès, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Article  MathSciNet  Google Scholar 

  15. Candès, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005)

    Article  MathSciNet  Google Scholar 

  16. Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, STOC’02, pp. 380–388. ACM, New York (2002)

    Google Scholar 

  17. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–159 (2001)

    Article  MathSciNet  Google Scholar 

  18. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)

    Article  MathSciNet  Google Scholar 

  19. Daubechies, I., Fornasier, M., Loris, I.: Accelerated projected gradient method for linear inverse problems with sparsity constraints. J. Fourier Anal. Appl. 14(5–6), 764–792 (2008)

    Article  MathSciNet  Google Scholar 

  20. Djeujo, R.A., Ruland, C.: Secure matrix generation for compressive sensing embedded cryptography. In: 2016 IEEE 7th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), pp. 1–8 (2016)

    Google Scholar 

  21. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  22. Donoho, D.L., Tsaig, Y., Drori, I., Starck, J.L.: Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit, submitted to. IEEE Transaction Information Theory, Citeseer (2006)

    MATH  Google Scholar 

  23. Eftekhari, A., Yap, H.L., Rozell, C.J., Wakin, M.B.: The restricted isometry property for random block diagonal matrices. Appl. Comput. Harmon. Anal. 38(1), 1–31 (2015)

    Article  MathSciNet  Google Scholar 

  24. Fay, R.: Introducing the counter mode of operation to compressed sensing based encryption. Inf. Process. Lett. 116(4), 279–283 (2016)

    Article  MathSciNet  Google Scholar 

  25. Fay, R., Ruland, C.: Compressive sensing encryption modes and their security. In: 2016 11th International Conference for Internet Technology and Secured Transactions (ICITST), pp. 119–126. IEEE (2016)

    Google Scholar 

  26. Gilbert, A., Indyk, P.: Sparse recovery using sparse matrices. Proc. IEEE 98(6), 937–947 (2010)

    Article  Google Scholar 

  27. Goyal, V.K., Vetterli, M., Thao, N.T.: Quantized overcomplete expansions in \(r^n\): analysis, synthesis, and algorithms. IEEE Trans. Inf. Theory 44(1), 16–31 (1998)

    Article  MathSciNet  Google Scholar 

  28. Güntürk, C.S., Lammers, M., Powell, A.M., Saab, R., Yılmaz, Ö.: Sobolev duals for random frames and \(\sigma \)\(\delta \) quantization of compressed sensing measurements. Found. Comput. Math. 13(1), 1–36 (2012)

    Article  MathSciNet  Google Scholar 

  29. Huebner, E., Tichatschke, R.: Relaxed proximal point algorithms for variational inequalities with multi-valued operators. Optim. Methods Softw. 23(6), 847–877 (2008)

    Article  MathSciNet  Google Scholar 

  30. Jacques, L., Laska, J.N., Boufounos, P.T., Baraniuk, R.G.: Robust 1-bit compressive sensing via binary stable embeddings of sparse vectors. IEEE Trans. Inf. Theory 59(4), 2082–2102 (2013)

    Article  MathSciNet  Google Scholar 

  31. Jafarpour, S., Xu, W., Hassibi, B., Calderbank, R.: Efficient and robust compressed sensing using optimized expander graphs. IEEE Trans. Inf. Theory 55(9), 4299–4308 (2009)

    Article  MathSciNet  Google Scholar 

  32. Johnson, W.B., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert space. Contemp. Math. 26 (1984)

    Google Scholar 

  33. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman and Hall/CRC Cryptography and Network Security Series. Chapman & Hall/CRC, London (2007)

    MATH  Google Scholar 

  34. Krahmer, F., Ward, R.: New and Improved Johnson-Lindenstrauss embeddings via the restricted isometry property. SIAM J. Math. Anal. 43(3), 1269–1281 (2011)

    Article  MathSciNet  Google Scholar 

  35. Needell, D., Tropp, J.A.: Cosamp: iterative signal recovery from incomplete and inaccurate samples. Commun. ACM 53(12), 93–100 (2010)

    Article  Google Scholar 

  36. Needell, D., Vershynin, R.: Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit. IEEE J. Sel. Top. Signal Process. 4(2), 310–316 (2010)

    Article  Google Scholar 

  37. Norouzi, M., Fleet, D.J., Salakhutdinov, R.R.: Hamming distance metric learning. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, pp. 1061–1069. Curran Associates, USA (2012)

    Google Scholar 

  38. Rachlin, Y., Baron, D.: The secrecy of compressed sensing measurements. In: 2008 46th Annual Allerton Conference on Communication, Control, and Computing, pp. 813–817. IEEE (2008)

    Google Scholar 

  39. Rangan, S.: Generalized approximate message passing for estimation with random linear mixing. In: 2011 IEEE International Symposium on Information Theory Proceedings (ISIT), pp. 2168–2172. IEEE (2011)

    Google Scholar 

  40. Rauhut, H.: Circulant and Toeplitz matrices in compressed sensing. In: SPARS’09 - Signal Processing with Adaptive Sparse Structured Representations (2009)

    Google Scholar 

  41. Tropp, J.A.: Just relax: convex programming methods for identifying sparse signals in noise. IEEE Trans. Inf. Theory 52(3), 1030–1051 (2006)

    Article  MathSciNet  Google Scholar 

  42. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  Google Scholar 

  43. Tropp, J.A., Gilbert, A.C., Strauss, M.J.: Algorithms for simultaneous sparse approximation. Part i: greedy pursuit. Signal Process. 86(3), 572–588 (2006)

    MATH  Google Scholar 

  44. Valsesia, D., Boufounos, P.T.: Universal encoding of multispectral images. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4453–4457 (2016)

    Google Scholar 

  45. Valsesia, D., Magli, E.: Binary adaptive embeddings from order statistics of random projections. IEEE Signal Process. Lett. 24(1), 111–115 (2017)

    Article  Google Scholar 

  46. Van Den Berg, E., Friedlander, M.P.: Probing the Pareto frontier for basis pursuit solutions. SIAM J. Sci. Comput. 31(2), 890–912 (2008)

    Article  MathSciNet  Google Scholar 

  47. Wang, M., Xu, W., Tang, A.: On the performance of sparse recovery via \(\ell _p \)-minimization \((0\le p \le 1) \). IEEE Trans. Inf. Theory 57(11), 7255–7278 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Magli .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Testa, M., Valsesia, D., Bianchi, T., Magli, E. (2019). Compressed Sensing and Security. In: Compressed Sensing for Privacy-Preserving Data Processing. SpringerBriefs in Electrical and Computer Engineering(). Springer, Singapore. https://doi.org/10.1007/978-981-13-2279-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2279-2_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2278-5

  • Online ISBN: 978-981-13-2279-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics