Skip to main content

Developing Designer Microalgal Consortia: A Suitable Approach to Sustainable Wastewater Treatment

  • Chapter
  • First Online:
Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment

Abstract

Nowadays, large amounts of improperly treated wastes have been discharged into water bodies, resulting in the reduction of water quality and the damage of aquatic ecosystems. One of the most severe issues is eutrophication phenomenon due to the excessive emission of nutrients such as nitrogen and phosphorus. However, most traditional approaches used for nutrient removal have complicated processes, high operation cost, and intensive energy demand. Alternatively, microalgal can provide a potential solution to the problems mentioned above. Microalgal-based technologies are low-cost and sustainable and recycle nutrients into biomass which would be converted to valuable goods. Since the nutrients such as nitrogen and phosphorus in wastewaters are indispensable for microalgal growth, microalgal exhibit superior nutrient removal to other microorganisms. Nevertheless, it is difficult to maintain axenic cultures of microalgal during wastewater treatment processes. Therefore natural and artificial consortia including microalgal consortia or microalgal-bacterial consortia have been utilized in several studies. The application of these consortia in wastewater remediation has many advantages; for example, synergistic relationship between the microorganisms in the consortia can enhance nutrient uptake and resistance to adverse conditions. This chapter reviews wastewater characteristics as nutrient sources for microalgal, formation and construction of microalgal consortia, factors influencing nutrient removal and biomass generation by consortia, the progress of treatment of various wastewaters (including municipal, industrial, and agricultural wastewater), and mechanisms involved in nutrient removal by consortia. Finally, the challenges of microalgal consortia research in bioremediation of wastewaters are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abed RMM, Köster J. The direct role of aerobic heterotrophic bacteria associated with cyanobacteria in the degradation of oil compounds. Int Biodeterior Biodegrad. 2005;55:29–37.

    Article  CAS  Google Scholar 

  • Abinandan S, Shanthakumar S. Challenges and opportunities in application of microalgae (Chlorophyta) for wastewater treatment: a review. Renew Sust Energ Rev. 2015;52:123–32. https://doi.org/10.1016/j.rser.2015.07.086.

    Article  CAS  Google Scholar 

  • Ahluwalia SS, Goyal D. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol. 2007;98(12):2243–57. https://doi.org/10.1016/j.biortech.2005.12.006.

    Article  CAS  PubMed  Google Scholar 

  • Aslan S, Kapdan IK. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng. 2006;28:64–70.

    Article  Google Scholar 

  • Bai X, Acharya K. Removal of trimethoprim, sulfamethoxazole, and triclosan by the green alga Nannochloris sp. J Hazard Mater. 2016;315:70–5.

    Article  CAS  PubMed  Google Scholar 

  • Barsanti L, Gualtieri P. Algae-anatomy, biochemistry and biotechnology. 2nd ed. Boca Raton: CRC Press; 2006. p. 162–209.

    Google Scholar 

  • Basílico G, Cabo LD, Magdaleno A, et al. Poultry effluent bio-treatment with Spirodela intermedia, and Periphyton in Mesocosms with water recirculation. Water Air Soil Pollut. 2016;227:1–11.

    Article  CAS  Google Scholar 

  • Beuckels A, Smolders E, Muylaert K. Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment. Water Res. 2015;77:98–106.

    Article  CAS  PubMed  Google Scholar 

  • Bohutskyi P, Kligerman DC, Byers N, et al. Effects of inoculum size, light intensity, and dose of anaerobic digestion centrate on growth. Algal Res. 2016;19:278–90.

    Article  Google Scholar 

  • Boonma S, Chaiklangmuang S, Chaiwongsar S, et al. Enhanced carbon dioxide fixation and bio-oil production of a microalgal consortium. Clean Soil Air Water. 2015;43:761–6.

    Article  CAS  Google Scholar 

  • Borde X, Guieysse B, Delgado O, Muñoz R, Hatti-Kaul R, Nugier-Chauvin C, Patin H, Bo Mattiasson B. Synergistic relationship in algal-bacterial microcosms for the treatment of aromatic pollutants. Bioresour Technol. 2003;86:293–300.

    Article  PubMed  Google Scholar 

  • Brenner K, You L, Arnold FH. Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol. 2008;26:483–9.

    Article  CAS  PubMed  Google Scholar 

  • Cai T, Park SY, Li Y. Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energ Rev. 2013;19:360–9. https://doi.org/10.1016/j.rser.2012.11.030.

    Article  CAS  Google Scholar 

  • Calabrese EJ. Evidence that hormesis represents an “overcompensation” response to a disruption in homeostasis. Ecotoxicol Environ Saf. 1999;42(2):135–7.

    Article  Google Scholar 

  • Chavan A, Mukherji S. Effect of co-contaminant phenol on performance of a laboratory-scale RBC with algal-bacterial biofilm treating petroleum hydrocarbon-rich wastewater. J Chem Technol Biotechnol. 2010;85:851–9.

    Article  CAS  Google Scholar 

  • Chen G, Zhao L, Qi Y. Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: a critical review. Appl Energy. 2015;137:282–91. https://doi.org/10.1016/j.apenergy.2014.10.032.

    Article  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Claxton R, Das KC. Biomass and bioenergy production potential of microalgal consortium in open and closed bioreactors using untreated carpet industry effluent as growth medium. Bioresour Technol. 2010;101(17):6751–60. https://doi.org/10.1016/j.biortech.2010.03.094.

    Article  CAS  PubMed  Google Scholar 

  • Chiu SY, Kao CY, Chen TY, Chang YB, Kuo CM, Lin CS. Cultivation of microalgal Chlorella for biomass and lipid production using wastewater as nutrient resource. Bioresour Technol. 2015;184:179–89. https://doi.org/10.1016/j.biortech.2014.11.080.

    Article  CAS  PubMed  Google Scholar 

  • Cho S, Luong TT, Lee D, et al. Reuse of effluent water from a municipal wastewater treatment plant in microalgae cultivation for biofuel production. Bioresour Technol. 2011;102:8639–45.

    Article  CAS  PubMed  Google Scholar 

  • Christenson L, Sims R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv. 2011;29(6):686–702.

    Article  CAS  PubMed  Google Scholar 

  • Christer B, Lars-Anders H. The biology of lakes and ponds. 2nd ed. Oxford: Oxford University Press; 2005.

    Google Scholar 

  • Cuellar-Bermudez SP, Aleman-Nava GS, Chandra R, et al. Nutrients utilization and contaminants removal. A review of two approaches of algae and cyanobacteria in wastewater. Algal Res. 2017;24:438–49.

    Article  Google Scholar 

  • Daims H, Lebedeva EV, Pjevac P, et al. Complete nitrification by Nitrospira bacteria. Nature. 2015;528:504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das DP, Baliarsingh N, Parida KM. Photo-oxidation of phenol over titania pillared zirconium phosphate and titanium phosphate. J Mol Catal A Chem. 2005;240:1–6.

    CAS  Google Scholar 

  • Davis TA, Volesky B, Mucci A. A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 2003;37(18):4311–30.

    Article  CAS  PubMed  Google Scholar 

  • de Godos I, González C, Becares E. Simultaneous nutrients and carbon removal during pretreated swine slurry degradation in a tubular biofilm photobioreactor. Appl Microbiol Biotechnol. 2009;82:187–94.

    Article  CAS  PubMed  Google Scholar 

  • de-Bashan LE, Bashan Y, Moreno M, et al. Increased pigment and lipid content, lipid variety and cell and population size of the microalgae Chlorella spp when co-immobilized in alginate beads with the microalgae-growth-promoting bacterium Azospirillum brasilense. Can J Microbiol. 2002a;48:514–21.

    Article  CAS  PubMed  Google Scholar 

  • de-Bashan LE, Moreno M, Hernandez JP, Bashan Y. Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Water Res. 2002b;36(12):2941–8. https://doi.org/10.1016/s0043-1354(01)00522-x.

    Article  CAS  PubMed  Google Scholar 

  • de-Bashan LE, Hernandez JP, Morey T. Microalgae growth-promoting bacteria as “helpers” for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater. Water Res. 2004;38:466–74.

    Article  CAS  PubMed  Google Scholar 

  • Dodds WK, Bouska WW, Eitzmann JL, Pilger TJ, Pitts KL, Riley AJ, Schloesser JT, Thornbrugh DJ. Eutrophication of U.S. freshwaters: analysis of potential economic damages. Environ Sci Technol. 2009;43(1):12–9. https://doi.org/10.1021/es801217q.

    Article  CAS  PubMed  Google Scholar 

  • DOE (U.S. Department of Energy). National algal biofuels technology roadmap. Washington, DC: U.S. Department of Energy, Energy Efficiency and Renewable Energy; 2010.

    Google Scholar 

  • Foster RA, Kuypers MM, Vagner T, et al. Nitrogen fixation and transfer in open ocean diatom-cyanobacterial symbioses. ISME J. 2011;5:1484–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franco-Morgado M, Alcantara C, Noyola A, et al. A study of photosynthetic biogas upgrading based on a high rate algal pond under alkaline conditions. Sci Total Environ. 2017;592:419–25.

    Article  CAS  PubMed  Google Scholar 

  • García D, Alcántara C, Blanco S, et al. Enhanced carbon, nitrogen and phosphorus removal from domestic wastewater in a novel anoxic-aerobic photobioreactor coupled with biogas upgrading. Chem Eng J. 2017;313:424–34.

    Article  CAS  Google Scholar 

  • Gonçalves AL, Pires JCM, Simoes M. A review on the use of microalgal consortia for wastewater treatment. Algal Res Biomass Biofuels Bioproducts. 2017;24:403–15. https://doi.org/10.1016/j.algal.2016.11.008.

    Article  Google Scholar 

  • González-Fernández C, Molinuevo-Salces B, García-González MC. Nitrogen transformations under different conditions in open ponds by means of microalgae–bacteria consortium treating pig slurry. Bioresour Technol. 2011;102(2):960–6. https://doi.org/10.1016/j.biortech.2010.09.052.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Fernandez C, Mahdy A, Ballesteros I, et al. Impact of temperature and photoperiod on anaerobic biodegradability of microalgae grown in urban wastewater. Int Biodeter Biodegr. 2016;106:16–23.

    Article  Google Scholar 

  • Gouveia L, Neves C, Sebastião D, et al. Effect of light on the production of bioelectricity and added-value microalgae biomass in a photosynthetic alga microbial fuel cell. Bioresour Technol. 2014;154:171–7.

    Article  CAS  PubMed  Google Scholar 

  • Groudev SN, Georgiev PS, Komnitsas K. Treatment of waters contaminated with radioactive elements and toxic heavy metals by a natural wetland. In: Wetlands & remediation: an international conference; 1999.

    Google Scholar 

  • Guldhe A, Kumari S, Ramanna L, Ramsundar P, Singh P, Rawat I, Bux F. Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation. J Environ Manag. 2017;203:299–315. https://doi.org/10.1016/j.jenvman.2017.07.012.

    Article  CAS  Google Scholar 

  • He Q, Yang H, Wu L, Hu C, et al. Effect of light intensity on physiological changes, carbon allocationand neutral lipid accumulation in oleaginous microalgae. Bioresour Technol. 2015;191:219–28.

    Article  CAS  PubMed  Google Scholar 

  • Henze M, Comeau Y. Wastewater characterization. In: Henze M, van Loosdrecht MCM, Ekama GA, Brdjanovic D, editors. Biological wastewater treatment: principles modelling and design. London: IWA Publishing; 2008. p. 33–52.

    Google Scholar 

  • Higgins SN, Malkin SY, Howell ET, et al. An ecological review of Cladophora glomerata (Chlorophyta) in the Laurentian Great Lakes. J Phycol. 2008;44:839–54.

    Article  PubMed  Google Scholar 

  • Hodges A, Fica Z, Wanlass J, VanDarlin J, Sims R. Nutrient and suspended solids removal from petrochemical wastewater via microalgal biofilm cultivation. Chemosphere. 2017;174:46–8.

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Li H, Luo S, et al. Thiol and pH dual-responsive dynamic covalent shell cross-linked micelles for triggered release of chemotherapeutic drugs. Polym Chem. 2013;4:695–706.

    Article  CAS  Google Scholar 

  • Hultberg M, Bodin H, Ardal E. Effect of microalgal treatments on pesticides in water. Environ Technol. 2016;37:893–8.

    Article  CAS  PubMed  Google Scholar 

  • Huo S, Zhu F, Zou B, Xu L, Cui F, You W. A two-stage system coupling hydrolytic acidification with algal microcosms for treatment of wastewater from the manufacture of acrylonitrile butadiene styrene (ABS) resin. Biotechnol Lett. 2018;40:689. https://doi.org/10.1007/s10529-018-2513-8.

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim WM, Karam MA, ElShahat RM. Biodegradation and utilization of organophosphorus pesticide malathion by cyanobacteria. Biomed Res Int. 2014;2014:392682.

    PubMed  PubMed Central  Google Scholar 

  • Jämsä M, Lyncha F, Santana-Sánchez A, et al. Nutrient removal and biodiesel feedstock potential of green alga UHCC00027 grown in municipal wastewater under Nordic conditions. Algal Res. 2017;26:65–73.

    Article  Google Scholar 

  • Ji M-K, Yun H-S, Park Y-T, Kabra AN, Oh I-H, Choi J. Mixotrophic cultivation of a microalga Scenedesmus obliquus in municipal wastewater supplemented with food wastewater and flue gas CO2 for biomass production. J Environ Manag. 2015;159:115–20. https://doi.org/10.1016/j.jenvman.2015.05.037.

    Article  CAS  PubMed  Google Scholar 

  • Johnson KR, Admassu W. Mixed algae cultures for low cost environmental compensation in cultures grown for lipid production and wastewater remediation. J Chem Technol Biotechnol. 2013;88:992–8.

    Article  CAS  Google Scholar 

  • Karya N, der Steen NV, Lens P. Photo-oxygenation to support nitrification in an algal–bacterial consortium treating artificial wastewater. Bioresour Technol. 2013;134:244–50.

    Article  CAS  PubMed  Google Scholar 

  • Kim DG, La HJ, Ahn CY, et al. Harvest of Scenedesmus sp. with bioflocculant and reuse of culture medium for subsequent high-density cultures. Bioresour Technol. 2011;102:3163–8.

    Article  CAS  PubMed  Google Scholar 

  • Kim BH, Ramanan R, Cho DH, Oh HM, Kim HS. Role of rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction. Biomass Bioenergy. 2014;69(3):95–105.

    Article  CAS  Google Scholar 

  • Koreivienė J, Valčiukas R, Karosienė J, et al. Testing of chlorella/Scenedesmus microalgal consortia for remediation of wastewater, CO2 mitigation and algae biomass feasibility for lipid production. J Environ Eng Landsc Manag. 2014;22:105–14.

    Article  Google Scholar 

  • Kouzuma A, Watanabe K. Exploring the potential of algae/bacteria interactions. Curr Opin Biotechnol. 2015;33:125–9.

    Article  CAS  PubMed  Google Scholar 

  • Krzemiṅska I, Piasecka A, Nosalewicz A, et al. Alterations of the lipid content and fatty acid profile of Chlorella protothecoides under different light intensities. Bioresour Technol. 2015;196:72–7.

    Article  PubMed  CAS  Google Scholar 

  • Lee K, Lee C. Effect of light/dark cycles on wastewater treatments by microalgae. Biotechnol Bioprocess Eng. 2001;6:194–9.

    Article  CAS  Google Scholar 

  • Lee J, Cho DH, Ramanan R, et al. Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris. Bioresour Technol. 2013;131:195–201.

    Article  CAS  PubMed  Google Scholar 

  • Li X, Xie Q. The study and application of algal-bacterial symbiotic system for sewage purification. J Gaungxi Univ National. 2006;12(3):112–7.

    Google Scholar 

  • Li WW, Yu HQ, Rittmann BE. Chemistry: reuse water pollutants. Nat News. 2015;528:29.

    Article  CAS  Google Scholar 

  • Li R, Zou C, Wan J, Huang X. Research of microalgae processing wastewater. Ind Water Treat. 2016;36(5):5–9.

    Google Scholar 

  • Liang Z, Liu Y, Ge F, Xu Y, Tao N, Peng F, Wong M. Efficiency assessment and pH effect in removing nitrogen and phosphorus by algae-bacteria combined system of Chlorella vulgaris and Bacillus licheniformis. Chemosphere. 2013;92(10):1383–9. https://doi.org/10.1016/j.chemosphere.2013.05.014.

    Article  CAS  PubMed  Google Scholar 

  • Liotta L, Gruttadauria M, di Carlo G. Heterogeneous catalytic degradation of phenolic substrates: catalysts activity. J Hazard Mater. 2009;162:588–606.

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Wu Y, Wu C, Muylaert K, Vyverman W, Yu H-Q, Muñoz R, Rittmann B. Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria: a review. Bioresour Technol. 2017;241:1127–37. https://doi.org/10.1016/j.biortech.2017.06.054.

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Wan J, Li J, et al. Periphytic biofilm: a buffer for phosphorus precipitation and release between sediments and water. Chemosphere. 2016;144:2058–64.

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Ma L, Shi X, Ma Y. The research progress of sensitivity of microalgae to common antibiotics. Prog Microbiol Immunol. 2012;40(1):83–6.

    CAS  Google Scholar 

  • Madadi R, Pourbabaee AA, Tabatabaei M, Zahed MA, Naghavi MR. Treatment of petrochemical wastewater by the green algae Chlorella vulgaris. Int J Environ Res. 2016;10:555–60.

    CAS  Google Scholar 

  • Mandotra SK, Kumar P, Suseela MR, et al. Evaluation of fatty acid profile and biodiesel properties of microalga Scenedesmus abundans under the influence of phosphorus, pH and light intensities. Bioresour Technol. 2016;201:222–9.

    Article  CAS  PubMed  Google Scholar 

  • Manzoor M, Ma R, Shakir AH, Tabssum F, Qazi JI. Microalgal-bacterial consortium: a cost-effective approach of wastewater treatment in Pakistan. Punjab Univ. J Zool. 2016;31(2):307–20.

    Google Scholar 

  • Markou G, Chatzipavlidis I, Georgakakis D. Cultivation of Arthrospira (Spirulina platensis) in olive-oil mill wastewater treated with sodium hypochlorite. Bioresour Technol. 2012;112:234–41.

    Article  CAS  PubMed  Google Scholar 

  • Maza-Márquez P, Martinez-Toledo MV, Fenice M. Biotreatment of olive washing wastewater by a selected microalgal-bacterial consortium. Int Biodeter Biodegr. 2014;88:69–76.

    Article  CAS  Google Scholar 

  • Meza B, de-Bashan LE, Bashan Y. Involvement of indole-3-acetic acid produced by Azospirillum brasilense in accumulating intracellular ammonium in Chlorella vulgaris. Res Microbiol. 2015;166:72–83.

    Article  CAS  PubMed  Google Scholar 

  • Min M, Wang L, Li Y, et al. Cultivating Chlorella sp. in a pilot-scale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient removal. Appl Biochem Biotechnol. 2011;165:123–37.

    Article  CAS  PubMed  Google Scholar 

  • Miyachi S, KANAI R, Mihara S. Metabolic roles of inorganic polyphosphates in Chlorella cells. Biochim Biophy Acta Gen Subj. 1964;93:625–34.

    Article  CAS  Google Scholar 

  • Mu J, Ma H, Xiong Z. Algae fungus symbiotic system in the research and application of urban sewage treatment. J Wuyi Inst. 2005;24(2):64–7.

    Google Scholar 

  • Mujtaba G, Lee K. Treatment of real wastewater using co-culture of immobilized Chlorella vulgaris and suspended activated sludge. Water Res. 2017;120:174–84. https://doi.org/10.1016/j.watres.2017.04.078.

    Article  CAS  PubMed  Google Scholar 

  • Mujtaba G, Rizwan M, Lee K. Simultaneous removal of inorganic nutrients and organic carbon by symbiotic co-culture of Chlorella vulgaris and Pseudomonas putida. Biotechnol Bioprocess Eng. 2015;20(6):1114–22. https://doi.org/10.1007/s12257-015-0421-5.

    Article  CAS  Google Scholar 

  • Mulbry W, Kondrad S, Pizarro C, et al. Treatment of dairy manure effluent using freshwater algae: algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers. Bioresour Technol. 2008;99:8137–42.

    Article  CAS  PubMed  Google Scholar 

  • Munoz R, Guieysse B. Algal bacterial processes for the treatment of hazardous contaminants: a review. Water Res. 2006;40:2799–815.

    Article  CAS  PubMed  Google Scholar 

  • Natrah FM, Bossier P, Sorgeloos P, Yusoff FM, Defoirdt T. Significance of microalgal-bacterial interactions for aquaculture. Rev Aquac. 2014;6:48–61.

    Article  Google Scholar 

  • Nicholson FA, Smith SR, Alloway BJ, et al. An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci Total Environ. 2003;311:205–19.

    Article  CAS  PubMed  Google Scholar 

  • Oswald WJ. Productivity of algae in sewage disposal. Sol Energy. 1973;15(1):107–17. https://doi.org/10.1016/0038-092x(73)90013-3.

    Article  CAS  Google Scholar 

  • Oswald W, Gotaas H, Golueke C, Kellen W, Gloyna E, Hermann E. Algae in waste treatment. Sewage Ind Waste. 1957;29(4):437–57.

    Google Scholar 

  • Pan X, Chang F, Kang L, et al. Effects of gibberellin A3 on growth and microcystin production in Microcystis aeruginosa (cyanophyta). J Plant Physiol. 2008;165(16):1691–7.

    Article  CAS  PubMed  Google Scholar 

  • Park Y, Je K-W, Lee K, Jung S-E, Choi T-J. Growth promotion of Chlorella ellipsoidea by co-inoculation with Brevundimonas sp isolated from the microalga. Hydrobiologia. 2008;598:219–28. https://doi.org/10.1007/s10750-007-9152-8.

    Article  CAS  Google Scholar 

  • Phang SM, Miah MS, Yeoh BG, et al. Spirulina cultivation in digested sago starch factory wastewater. J Appl Phycol. 2000;12:395–400.

    Google Scholar 

  • Pinto G, Pollio A, Previtera L. Removal of low molecular weight phenols from olive oil mill wastewater using microalgae. Biotechnol Lett. 2013;25:1657–9.

    Article  Google Scholar 

  • Powell N, Shilton AN, Pratt AN. Factors influencing luxury uptake of phosphorus by microalgae in waste stabilization ponds. Environ Sci Technol. 2008;42:5958–62.

    Article  CAS  PubMed  Google Scholar 

  • Qin L, Wang ZM, Sun Y, Shu Q, Feng P, Zhu L, Xu J, Yuan Z. Microalgae consortia cultivation in dairy wastewater to improve the potential of nutrient removal and biodiesel feedstock production. Environ Sci Pollut Res. 2016;23(9):8379–87. https://doi.org/10.1007/s11356-015-6004-3.

    Article  CAS  Google Scholar 

  • Qin L, Wei D, Wang ZM, Alam MA. Advantage assessment of mixed culture of Chlorella vulgaris and Yarrowia lipolytica for treatment of liquid digestate of yeast industry and cogeneration of biofuel feedstock. Appl Biochem Biotechnol. 2018:1–14. https://doi.org/10.1007/s12010-018-2854-8.

    Article  PubMed  CAS  Google Scholar 

  • Quijano G, Arcila JS, Buitrón G. Microalgal-bacterial aggregates: applications and perspectives for wastewater treatment. Biotechnol Adv. 2017;35(6):772–81. https://doi.org/10.1016/j.biotechadv.2017.07.003.

    Article  CAS  PubMed  Google Scholar 

  • Ramanan R, Kim BH, Cho DH, et al. Algae-bacteria interactions: evolution, ecology and emerging applications. Biotechnol Adv. 2016;34:14–29.

    Article  CAS  PubMed  Google Scholar 

  • Rawat I, Ranjith Kumar R, Mutanda T, et al. Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy. 2011;88:3411–24.

    Article  CAS  Google Scholar 

  • Renuka N, Sood A, Ratha SK, Prasanna R, Ahluwalia AS. Evaluation of microalgal consortia for treatment of primary treated sewage effluent and biomass production. J Appl Phycol. 2013;25(5):1529–37. https://doi.org/10.1007/s10811-013-9982-x.

    Article  CAS  Google Scholar 

  • Riaño B, Molinuevo B, García-González M. Treatment of fish processing wastewater with microalgae-containing microbiota. Bioresour Technol. 2011;102:10829–33.

    Article  PubMed  CAS  Google Scholar 

  • Risgaard-Petersen N, Nicolaisen MH, Revsbech NP. Competition between ammonia-oxidizing bacteria and benthic microalgae. Appl Environ Microbiol. 2004;70:5528–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato T, Qadir M, Yamamoto S. Global, regional, and country level need for data on wastewater generation, treatment, and use. Agric Water Manag. 2013;130:1–13.

    Article  Google Scholar 

  • Schmidt JJ, Gagnon GA, Jamieson RC. Microalgae growth and phosphorus uptake in wastewater under simulated cold region conditions. Ecol Eng. 2016;95:588–93.

    Article  Google Scholar 

  • Sonune A, Ghate R. Developments in wastewater treatment methods. Desalination. 2004;167(1–3):55–63. https://doi.org/10.1016/j.desal.2004.06.113.

    Article  CAS  Google Scholar 

  • Sriram S, Seenivasan R. Biophotonic perception on Desmodesmus sp. VIT growth, lipid and carbohydrate content. Bioresour Technol. 2015;198:626–33.

    Article  CAS  PubMed  Google Scholar 

  • Stumn W, Morgan JJ. Aquatic chemistry: chemical equilibria and rates in natural waters. 3rd ed. New York: John Wiley and Sons; 1996. p. 744.

    Google Scholar 

  • Su Y, Mennerich A, Urban B. Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture. Water Res. 2011;45(11):3351–8. https://doi.org/10.1016/j.watres.2011.03.046.

    Article  CAS  PubMed  Google Scholar 

  • Su Y, Mennerich A, Urban B. Synergistic cooperation between wastewater-born algae and activated sludge for wastewater treatment: influence of algae and sludge inoculation ratios. Bioresour Technol. 2012;105:67–73.

    Article  CAS  PubMed  Google Scholar 

  • Subashchandrabose SR, Ramakrishnan B, Megharaj M, et al. Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnol Adv. 2011;29:896–907.

    Article  CAS  PubMed  Google Scholar 

  • Tan X, Zhang Y, Yang L, et al. Outdoor cultures of Chlorella pyrenoidosa in the effluent of anaerobically. Bioresour Technol. 2016;200:606–15.

    Article  CAS  PubMed  Google Scholar 

  • Tate JJ, Gutierrez-Wing MT, Rusch KA, Benton MG. The effects of plant growth substances and mixed cultures on growth and metabolite production of green algae chlorella sp.: a review. J Plant Growth Regul. 2013;32(2):417–28. https://doi.org/10.1007/s00344-012-9302-8.

    Article  CAS  Google Scholar 

  • Thawechai T, Cheirsilp B, Louhasakul Y, et al. Mitigation of carbon dioxide by oleaginous microalgae for lipids and pigments production: effect of light illumination and carbon dioxide feeding strategies. Bioresour Technol. 2016;219:139–49.

    Article  CAS  PubMed  Google Scholar 

  • Unnithan VV, Unc A, Smith GB. Mini-review: a priori considerations for bacteria–algae interactions in algal biofuel systems receiving municipal wastewaters. Algal Res. 2014;4:35–40. https://doi.org/10.1016/j.algal.2013.11.009.

    Article  Google Scholar 

  • Vasseur C, Bougaran G, Garnier M, et al. Carbon conversion efficiency and population dynamics of a marine algae-bacteria consortium growing on simplified synthetic digestate: first step in a bioprocess coupling algal production and anaerobic digestion. Bioresour Technol. 2012;119:79–87.

    Article  CAS  PubMed  Google Scholar 

  • Vílchez C, Garbayo I, Lobato MV, et al. Microalgae-mediated chemicals production and wastes removal. Enzym Microb Technol. 1997;20(8):562–72.

    Article  Google Scholar 

  • Wang M, Yang H, Ergas SJ, van der Steen P. A novel shortcut nitrogen removal process using an algal-bacterial consortium in a photo-sequencing batch reactor (PSBR). Water Res. 2015;87:38–48. https://doi.org/10.1016/j.watres.2015.09.016.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Ho S-H, Cheng C-L, Guo W-Q, Nagarajan D, Ren N-Q, Lee D-J, Chang J-S. Perspectives on the feasibility of using microalgae for industrial wastewater treatment. Bioresour Technol. 2016;222:485–97. https://doi.org/10.1016/j.biortech.2016.09.106.

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Cheng X, Zeng X. Mechanisms and applications of bacterial-algal symbiotic systems for pollutant removal from wastewater. Acta Sci Circumst. 2018;38(1):13–22.

    CAS  Google Scholar 

  • Xing L, Ma Q, Li H, Zhang J. Advanced wastewater treatment with algae technique. Water Purif Technol. 2009;28(6):44–9.

    CAS  Google Scholar 

  • Xiong J, Kurade MB, Abou-Shanab RAI, et al. Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate. Bioresour Technol. 2016;205:183–90.

    Article  CAS  PubMed  Google Scholar 

  • Yin X, Qiang Z, Ben W, et al. Biodegradation of sulfamethazine by activated sludge: lab-scale study. J Environ Eng. 2014;140(7):345–51.

    Article  CAS  Google Scholar 

  • Zhang J, Hou H, Tonf S. Research progress of interaction between microalgae and bacteria. Acta Laser Biol Sin. 2016;25:385–90.

    Google Scholar 

  • Zhang H, Sun H, Wang X, Wu Y, Yao X, Tang J, Ge X. Research progress on livestock wastewater treatment by microalgae and microbial algae symbiosis system. Chin J Anim Sci. 2017;53(8):15–20.

    Google Scholar 

  • Zhao T. The effect of temperature on biomacromolecule, total lipid and fatty acid content and composition in four microalgae. Qingdao University of Science and Technology; 2016.

    Google Scholar 

  • Zhi T, Cheng L, Xu X, Zhang L, Chen H. Advances on heavy metals removal from aqueous solution by algae. Prog Chem. 2011;23(8):1782–94.

    CAS  Google Scholar 

  • Zhou D, Niu S, Xiong Y, Yang Y, Dong S. Microbial selection pressure is not a prerequisite for granulation: dynamic granulation and microbial community study in a complete mixing bioreactor. Bioresour Technol. 2014;161:102–8. https://doi.org/10.1016/j.biortech.2014.03.00.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the national key research and development program of China (2016YFB0601004), the Natural Science Foundation for research teams of Guangdong Province (2016A030312007), and Pearl River S&T Nova Program of Guangzhou (201610010155).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunni Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, S., Huo, S., Feng, P. (2019). Developing Designer Microalgal Consortia: A Suitable Approach to Sustainable Wastewater Treatment. In: Alam, M., Wang, Z. (eds) Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment. Springer, Singapore. https://doi.org/10.1007/978-981-13-2264-8_22

Download citation

Publish with us

Policies and ethics