Advancement of Bio-hydrogen Production from Microalgae

  • Mamudul Hasan Razu
  • Farzana Hossain
  • Mala Khan


In the twenty-first century, ensuring energy security is a key challenge to economic and political stability of the globe. Biological hydrogen production from microalgae is the promising alternative source for potential renewable energy which only releases water vapor as by-product without polluting environment as it does by fossil fuel, emitting CO2 when burnt. Microalgae can generate hydrogen by bio-photolysis or photo-fermentation. Two enzymes, viz., hydrogenase and nitrogenase, are responsible for biological hydrogen production process in metabolic pathway of microalgae. Though successful research has been conducted at laboratory scale producing hydrogen from microalgae, low yield has been recognized as challenge due to light capturing efficiency, oxygen sensitivity of enzyme, CO2 fixation efficiency, etc. during its bulk production for commercialization. In biological H2 production, cost reduction in algae culture and downstream process is required to make it economically feasible. Therefore present research emphasizes overcoming key challenges for scaling up biomass and H2 production through genetic and low-cost designed photo-bioreactors. This chapter depicted the principles of photobiological hydrogen production in microalgae along with various recent approaches and emerging strategies to mitigate the present limitations for hydrogen production.


Microalgae Renewable energy Bio-photolysis Hydrogenase Biological hydrogen Photo-bioreactors 



We are greatful to the authorities of Designated Reference Institute for Chemical Measurements (DRiCM), Bangladesh Council of Scientific and Industrial Research (BCSIR), and Md Asraful Alam, PhD, GIEC-CAS, China for supporting to write this book chapter.


  1. Adams MW. The structure and mechanism of iron-hydrogenases. Biochim Biophys Acta. 1990;1020:115–45.PubMedCrossRefGoogle Scholar
  2. Adams MW, Hall DO. Purification of the membrane-bound hydrogenase of Escherichia coli. J Biol Chem. 1979;183:11–22.Google Scholar
  3. Akkerman I, Janssen M, Rocha J, Wijffels RH. Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrog Energy. 2002;27:1195–208.CrossRefGoogle Scholar
  4. Alam MA, Wang ZM, Yuan ZH. Generation and harvesting of microalgae biomass for biofuel production. In: Tripathi BN, Kumar D, editors. Prospects and challenges in algal biotechnology. Singapore: Springer; 2017. p. 89–111.Google Scholar
  5. Antal TK, Volgusheva AA, Kukarskih GP, Krendeleva TE, Rubin AB. Relationships between H2 photoproduction and different electron transport pathways in sulfur-deprived Chlamydomonas reinhardtii. Int J Hydrog Energy. 2009;34:9087–94.CrossRefGoogle Scholar
  6. Aubert-Jousset E, Cano M, Guedeney G, Richaud P, Cournac L. Role of HoxE subunit in Synechocystis PCC 6803 hydrogenase. FEBS J. 2011;278:4035–43.PubMedCrossRefGoogle Scholar
  7. Azwar MY, Hussain MA, Abdul-Wahab AK. Development of bio-hydrogen production by photo biological: fermentation and electrochemical processes: a review. Renew Sust Energ Rev. 2014;31:158–73.CrossRefGoogle Scholar
  8. Baebprasert W, Jantaro S, Khetkorn W, Lindblad P, Incharoensakdi A. Increased H2 production in the cyanobacterium Synechocystis sp. strain PCC 6803 by redirecting the electron supply via genetic engineering of the nitrate assimilation pathway. Metab Eng. 2011;13:610–6.PubMedCrossRefGoogle Scholar
  9. Baltz A, Kieu-Van D, Beyly A, Auroy P, Richaud P, Cournac L, Peltier G. Plastidial expression of type II NAD(P)H dehydrogenase increases the reducing state of plastoquinones and hydrogen photoproduction rate by the indirect pathway in Chlamydomonas reinhardtii. Plant Physiol. 2014;165:1344–52.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Beckmann J, Lehr F, Finazzi G, Hankamer B, Posten C, Wobbe L, Kruse O. Improvement of light to biomass conversion by deregulation of light-harvesting protein translation in Chlamydomonas reinhardtii. J Biotechnol. 2009;142:70–7.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Behera S, Singh R, Arora R, Sharma NK, Shukla M, Kumar S. Scope of algae as third generation biofuels Frontiers in bioengineering and biotechnology. Mar Biotechnol. 2015;90(2):1–13.Google Scholar
  12. Ben_cina M. Illumination of the spatial order of intracellular pH by genetically encoded pH-sensitive sensors. Sensors. 2013;13:16736–58.CrossRefGoogle Scholar
  13. Benemann JR, Berenson JA, Kaplan NO, Kamen MD. Hydrogen evolution by a chloroplast-ferredoxin-hydrogenase system. Proc Natl Acad Sci. 1973;70:2317–20.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Berggren G, Adamska A, Lambertz C, Simmons TR, Esselborn J, Atta M, Gambarelli S, et al. Biomimetic assembly and activation of [FeFe]- hydrogenases. Nature. 2013;499:66–9.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bimbo N, Ting VP, Sharpe JE, Mays TJ. Analysis of optimal conditions for adsorptive hydrogen storage in microporous solids. Colloids Surf A Physicochem Eng Asp. 2013;437:113–9.CrossRefGoogle Scholar
  16. Blankenship RE, Chen M. Spectral expansion and antenna reduction can enhance photosynthesis for energy production. Curr Opin Chem Biol. 2013;17:457–61.PubMedCrossRefGoogle Scholar
  17. Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, Ghirardi M, Gunner MR, et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science. 2011;332:805–9.PubMedCrossRefGoogle Scholar
  18. Bleijlevens B, Buhrke T, Linden EVD, Friedrich B, Albracht SP. The auxiliary protein HypX provides oxygen tolerance to the soluble [NiFe]- hydrogenase of Ralstonia eutropha H16 by way of a cyanide ligand to nickel. J Biol Chem. 2004;279:46686–91.PubMedCrossRefGoogle Scholar
  19. Bothe H, Schmitz O, Yates MG, Newton WE. Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiol Mol Biol Rev. 2010;74:529–51.PubMedPubMedCentralCrossRefGoogle Scholar
  20. BP. Statistical review of world energy 2013. 2013.
  21. Burgess SJ, Tamburic B, Zemichael F, Hellgardt K, Nixon PJ. Solar-driven hydrogen production in green algae. In: Laskin AI, Sariaslani S, Gadd GM, editors. Advances in applied microbiology, vol. 75. Waltham: Academic; 2011. p. 71–110.CrossRefGoogle Scholar
  22. Carrieri D, Wawrousek K, Eckert C, Yu J, Maness PC. The role of the bi-directional hydrogenase in cyanobacteria. Bioresour Technol. 2011;102:8368–77.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Chang FY, Lin CY. Bio-hydrogen production using an up-flow anaerobic sludge blanket reactor. Int J Hydrog Energy. 2004;29:33–9.CrossRefGoogle Scholar
  24. Chen HC, Newton AJ, Melis A. Role of SulP, a nuclear-encoded chloroplast sulfate permease, in sulfate transport and H2 evolution in Chlamydomonas reinhardtii. Photosynth Res. 2005;84:289–96.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Chien LF, Kuo TT, Liu BH, Lin HD, Feng TY, Huang CC. Solar-to-bioH2 production enhanced by homologous overexpression of hydrogenase in green alga Chlorella sp. DT. Int J Hydrog Energy. 2012;37:17738–48.CrossRefGoogle Scholar
  26. Cho SW, Kim S, Kim JM, Kim J-S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. 2013;31:230–2.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Chochois V, Dauvillee D, Beyly A, Tolleter D, Cuine S, Timpano H, Ball S, et al. Hydrogen production in Chlamydomonas: photosystem II dependent and -independent pathways differ in their requirement for starch metabolism. Plant Physiol. 2009;151:631–40.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature. 2012;488:294–303.CrossRefPubMedGoogle Scholar
  29. Cohen I, Knopf JA, Irihimovitch V, Shapira M. A proposed mechanism for the inhibitory effects of oxidative stress on rubisco assembly and its subunit expression. Plant Physiol. 2005;137:738–46.PubMedPubMedCentralCrossRefGoogle Scholar
  30. D’Adamo S, Jinkerson RE, Boyd ES, Brown SL, Baxter BK, Peters JW, Posewitz MC. Evolutionary and biotechnological implications of robust hydrogenase activity in halophilic strains of Tetraselmis. PLoS One. 2014;9:e85812.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Das D, Veziroglu TN. Advances in biological hydrogen production processes. Int J Hydrog Energy. 2008;33:6046–57.CrossRefGoogle Scholar
  32. Das D, Khanna N, Dasgupta CN. Biohydrogen production: fundamentals and technology advances. Boca Raton: CRC Press; 2014.CrossRefGoogle Scholar
  33. de Mooij T, Janssen M, Cerezo-Chinarro O, Mussgnug J, Kruse O, Ballottari M, Bassi R, et al. Antenna size reduction as a strategy to increase biomass productivity: a great potential not yet realized. J Appl Phycol. 2015;27:1063–77.CrossRefGoogle Scholar
  34. Debabrata D, Veziroglu TN. Hydrogen production by biological processes: a survey of literature. Int J Hydrog Energy. 2001;26:13–28.CrossRefGoogle Scholar
  35. Debuchy R, Purton S, Rochaix JD. The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. EMBO J. 1989;8:2803–9.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Demaurex N. pH homeostasis of cellular organelles. Physiology. 2002;17:1–5.CrossRefGoogle Scholar
  37. Dementin S, Leroux F, Cournac L, de lacey AL, Volbeda A, Leger C, Burlat B, et al. Introduction of methionines in the gas channel makes NiFe hydrogenase aero-tolerant. J Am Chem Soc. 2009;131:10156–64.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Department of Chemistry, University of York, UK. The essential chemical industry: chemical reactors.
  39. Ding J, Wang X, Zhou XF, Renu NQ, Guo WQ. CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production. Bioresour Technol. 2010;101(18):7005–13.CrossRefGoogle Scholar
  40. Doebbe A, Rupprecht J, Beckmann J, Mussgnug JH, Hallmann A, Hankamer B, Krus O. Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: impacts on biological H2 production. J Biotechnol. 2007;131:27–33.PubMedCrossRefGoogle Scholar
  41. Doenitz WZ, Dietrich EE, Streicher R. Electrochemical high technology for hydrogen production or direct electricity generation. Int J Hydrog Energy. 1988;13:283–7.CrossRefGoogle Scholar
  42. English CM, Eckert C, Brown K, Seibert M, King PW. Recombinant and in vitro expression systems for hydrogenases: new frontiers in basic and applied studies for biological and synthetic H2 production. Dalton Trans. 2009;45:9970–8.CrossRefGoogle Scholar
  43. Eroglu E, Melis A. Photobiological hydrogen production: recent advances and state of the art. Bioresour Technol. 2011;102:8403–13.PubMedCrossRefGoogle Scholar
  44. Eroglu E, Melis A. Microalgal hydrogen production research. Int J Hydrog Energy. 2016;41:12772–98.CrossRefGoogle Scholar
  45. Esper B, Badura A, Rögner M. Photosynthesis as a power supply for (bio-) hydrogen production. Trends Plant Sci. 2006;11:543–9.PubMedCrossRefGoogle Scholar
  46. Esselborn J, Lambertz C, Adamska-Venkatesh A, Simmons T, Berggren G, Noth J, Siebel J, et al. Spontaneous activation of [FeFe]- hydrogenases by an inorganic [2Fe] active site mimic. Nat Chem Biol. 2013;9:607–9.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Evens TJ, Chapman DJ, Robbins RA, D’Asaro EA. An analytical pat-plate photobioreactor with a spectrally attenuated light source for the incubation of phytoplankton under dynamic light regimes. Hydrobiologia. 2000;434:55–62.CrossRefGoogle Scholar
  48. Fang HHP, Liu H. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour Technol. 2002;82:87–93.PubMedCrossRefGoogle Scholar
  49. Flynn T, Ghirardi ML, Seibert M. Accumulation of O2-tolerant phenotypes in H2-producing strains of Chlamydomonas reinhardtii by sequential applications of chemical mutagenesis and selection. Int J Hydrog Energy. 2002;27:1421–30.CrossRefGoogle Scholar
  50. Fouchard S, Hemschemeier A, Caruana A, Pruvost K, Legrand J, Happe T, Peltier G, et al. Autotrophic and mixotrophic hydrogen photoproduction in sulfur-deprived Chlamydomonas cells. Appl Environ Microbiol. 2005;71:6199–205.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Frey M. Hydrogenases: hydrogen-activating enzymes. ChemBioChem. 2002;3:153–60.PubMedCrossRefGoogle Scholar
  52. Fuel Cell and Hydrogen Energy Association (FCHEA). International developments. 2014. Accessed 29 Oct 2015.
  53. Gaffron H. Reduction of CO2 with H2 in green plants. Nature. 1939;143:204–5.CrossRefGoogle Scholar
  54. Gaffron H, Rubin J. Fermentative and photochemical production of hydrogen in algae. J Gen Physiol. 1942;26:219–40.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Gao H, Wright DA, Li T, Wang Y, Horken K, Weeks DP, Yang B. TALE activation of endogenous genes in Chlamydomonas reinhardtii. Algal Res. 2014;1:52–60.CrossRefGoogle Scholar
  56. Ghirardi ML, Zhang L, Lee JW, Flynn T, Seibert M, et al. Microalgae: a green source of renewable H(2). Trends Biotechnol. 2000;18:506–11.PubMedCrossRefGoogle Scholar
  57. Ghirardi ML, King PW, Mulder DW, Eckert C, Dubini A, Maness PC, Yu J. Hydrogen production by water biophotolysis. In: Zannoni D, De Philippis R, editors. Microbial bio-energy: hydrogen production. Dordrecht: Springer; 2014. p. 101–35.CrossRefGoogle Scholar
  58. Giannelli L, Torzillo G. Hydrogen production with the microalga Chlamydomonas reinhardtii grown in a compact tubular photobioreactor immersed in a scattering light nanoparticle suspension. Int J Hydrog Energy. 2012;37:16951–61.CrossRefGoogle Scholar
  59. Ginkel SV, Logan BE. Inhibition of bio-hydrogen production by un-dissociated acetic and butyric acids. Environ Sci Technol. 2005;39:9351–6.PubMedCrossRefGoogle Scholar
  60. Global Carbon Project (GCP). Global carbon atlas. 2013. http:// Accessed 29 Oct 2015.Google Scholar
  61. Godaux D, Emoncls Alt B, Berne N, Ghysels B, Alric J, Remacle C, Cardol P. A novel screening method for hydrogenase-deficient mutants in Chlamydomonas reinhardtii based on in vivo chlorophyll fluorescence and photosystem II quantum yield. Int J Hydrog Energy. 2013;38:1826–36.CrossRefGoogle Scholar
  62. Government of Japan (GoJ). The 4th strategic energy plan of Japan – provisional translation; 2014.Google Scholar
  63. Gupta SK, Kumari S, Reddy K, Bux F. Trends in biohydrogen production: major challenges and state-of-the-art developments. Environ Technol. 2013;34:1653–70.PubMedCrossRefGoogle Scholar
  64. Gutekunst K, Chen X, Schreiber K, Kaspar U, Makam S, Appel J. The bi-directional NiFe-hydrogenase in Synechocystis sp. PCC 6803 is reduced by flavodoxin and ferredoxin and is essential under mixotrophic, nitrate-limiting conditions. J Biol Chem. 2014;289:1930–7.PubMedCrossRefGoogle Scholar
  65. Hallen beck PC, Ghosh D. Advances in fermentative bio-hydrogen production: the way forward. Trends Biotechnol. 2009;27(5):287–97.CrossRefGoogle Scholar
  66. Hallenbeck PC, Benemann JR. Biological hydrogen production; fundamentals and limiting processes. Int J Hydrog Energy. 2002;27:1185–93.CrossRefGoogle Scholar
  67. Hansel A, Lindblad P. Towards optimization of cyanobacteria as biotechnologically relevant producers of molecular hydrogen. Appl Microbiol Biotechnol. 1998;50:153–60.CrossRefGoogle Scholar
  68. Happe T, Mosler B, Naber JD. Induction, localization and metal content of hydrogenase in the green alga Chlamydomonas reinhardtii. Eur J Biochem. 1994;222:769–74.PubMedCrossRefGoogle Scholar
  69. Hemschemeier A, Happe T. Alternative photosynthetic electron transport pathways during anaerobiosis in the green alga Chlamydomonas reinhardtii. Biochim Biophys Acta. 2011;1807:919–26.PubMedCrossRefGoogle Scholar
  70. Holladay JD, Hu J, King DL, Wang Y. An overview of hydrogen production technologies. Catal Today. 2009;139:244–60.CrossRefGoogle Scholar
  71. Hruzewicz-Kołodziejczyk A, Ting VP, Bimbo N, Mays TJ. Improving comparability of hydrogen storage capacities of nanoporous materials. Int J Hydrog Energy. 2012;37:2728–36.CrossRefGoogle Scholar
  72. Scholar
  73. Huesemann MH, Hausmann TS, Carter BM, Gerschler JJ, Benemann JR. Hydrogen generation through indirect biophotolysis in batch cultures of the non-heterocystous nitrogen-fixing cyanobacterium Plectonema boryanum. Appl Biochem Biotechnol. 2010;162:208–20.PubMedCrossRefGoogle Scholar
  74. Hwang JH, Kim HC, Choi JA, Abou-Shanab RAI, Dempsey BA, Regan JM, Kim JR, et al. Photoautotrophic hydrogen production by eukaryotic microalgae under aerobic conditions. Nat Commun. 2014;5:3234.PubMedCrossRefGoogle Scholar
  75. Intergovernmental panel on climate change (IPCC). Shares of energy sources in total global primary energy supply in 2000 (p. 6). Special Report Renewable Energy Sources (SRREN) – Summary for Policy Makers; 2011.
  76. International Energy Agency (IEA). World energy outlook 2014. 2014. Accessed 08 Dec 2015.
  77. Jackson DD, Ellms JW. On odors and tastes of surface waters with special reference to Anabaena, a microscopic organism found in certain water supplies of Massachusetts. Rep Mass State Board Health. 1896;20:410–20.Google Scholar
  78. Jiang W, Brueggeman AJ, Horken KM, Plucinak TM, Weeks DP. Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii. Eukaryot Cell. 2014;13:1465–9.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Kanai T, Imanaka H, Nakajima A, Uwamori K, Omori Y, Fukui T, Atomi H, Imanaka T. Continuous hydrogen production by the hyper thermophilic archaeon: Thermococcus kodakaraensis KOD1. J Biotechnol. 2005;116:271–82.PubMedCrossRefGoogle Scholar
  80. Khanna N, Lindblad P. Cyanobacterial hydrogenases and hydrogen metabolism revisited: recent progress and future prospects. Int J Mol Sci. 2015;16:10537–61. Scholar
  81. Khetkorn W, Lindblad P, Incharoensakdi A. Inactivation of uptake hydrogenase leads to enhanced and sustained hydrogen production with high nitrogenase activity under high light exposure in the cyanobacterium Anabaena siamensis TISTR 8012. J Biol Eng. 2012a;6:19.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Khetkorn W, Baebprasert W, Lindblad P, Incharoensakdi A. Redirecting the electron flow towards the nitrogenase and bidirectional Hox-hydrogenase by using specific inhibitors results in enhanced H2 production in the cyanobacterium Anabaena siamensis TISTR 8012. Bioresour Technol. 2012b;118:265–71.PubMedCrossRefGoogle Scholar
  83. Khetkorn W, Khanna N, Incharoensakdi A, Lindblad P. Metabolic and genetic engineering of cyanobacteria for enhanced hydrogen production. Biofuels. 2013;4:535–61.CrossRefGoogle Scholar
  84. Khetkorn W, Rastogi RP, Incharoeneskdi A, lindbled P, Madamuar D, Pandey A, Larroche C. Microalgal hydrogen production – a review. Bioresour Technol. 2017;243:1194–206.PubMedCrossRefGoogle Scholar
  85. Kim DH, Kim MS. Hydrogenases for biological hydrogen production. Bioresour Technol. 2011;102:8423–31.PubMedCrossRefGoogle Scholar
  86. Kindle KL, Schnell RA, Fernandez E, Lefebvre PA. Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase. J Cell Biol. 1989;109:2589–601.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Kosourov SN, Seibert M. Hydrogen photo production by nutrient-deprived Chlamydomonas reinhardtii cells immobilized within thin alginate films under aerobic and anaerobic conditions. Biotechnol Bioeng. 2009;102:50–8.PubMedCrossRefPubMedCentralGoogle Scholar
  88. Kosourov S, Tsygankov A, Seibert M, Ghirardi ML, et al. Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: Effects of culture parameters. Biotechnol Bioeng. 2002;78:731–40.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Kosourov S, Makarova V, Fedorov AS, Tsygankov A, Seibert M, et al. The effect of sulfur re-addition on H2 photo production by sulfur-deprived green algae. Photosynth Res. 2005;85:295–305.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Kosourov SN, Batyrova K, Petushkova E, Tsygankov A, Ghirardi M, Seibert M. Maximizing the hydrogen photo production yields in Chlamydomonas reinhardtii cultures: the effect of the H2 partial pressure. Int J Hydrog Energy. 2012;37:8850–8.CrossRefGoogle Scholar
  91. Kroumov AD, Scheufele FB, Trigueros DEG, Modenes AN, Zaharieva M, Najdenski H. Modeling and technoeconomic analysis of algae for bioenergy and co-products. In: Rastogi RP, Madamwar D, Pandey A, editors. Algal green chemistry: recent progress in biotechnology. Amsterdam: Elsevier; 2017. p. 201–41.CrossRefGoogle Scholar
  92. Kruse O, Rupprecht J, Bader KP, Thomas-Hall S, Schenk PM, Finazzi G, Hankamer B. Improved photobiological H2 production in engineered green algal cells. J Biol Chem. 2005;280:34170–7.PubMedCrossRefPubMedCentralGoogle Scholar
  93. Kumar K, Das D. CO2 sequestration and hydrogen production using cyanobacteria and green algae. In: Reza R, editor. Natural and artificial photosynthesis. Hoboken: Wiley; 2013. p. 173–215.CrossRefGoogle Scholar
  94. Kyazze G, Perez NM, Dinsdale R, Premier GC, Hawkes FR, Guwy AJ, Hawkes DL. Influence of substrate concentration on the stability and yield of continuous biohydrogen production. Biotechnol Bioeng. 2006;93:971–9.PubMedCrossRefPubMedCentralGoogle Scholar
  95. Laurinavichene TV, Fedorov AS, Ghirardi ML, Seibert M, Tsygankov AA. Demonstration of sustained hydrogen photoproduction by immobilized, sulfur deprived Chlamydomonas reinhardtii cells. Int J Hydrog Energy. 2006;31:659–67.CrossRefGoogle Scholar
  96. Laurinavichene TV, Kosourov SN, Ghirardi ML, Michael Seibert Anatoly A. Prolongation of H2 photo production by immobilized, sulfur-limited Chlamydomonas reinhardtii cultures. J Biotechnol. 2008;134:275–7.PubMedPubMedCentralGoogle Scholar
  97. Lee J. Designer transgenic algae for photobiological production of hydrogen from water. In: Lee JW, editor. Advanced biofuels and bioproducts. New York: Springer; 2013. p. 371–404.CrossRefGoogle Scholar
  98. Lee JW, Greenbaum E. A new oxygen sensitivity and its potential application in photosynthetic H2 production. Appl Biochem Biotechnol. 2003;105:303–13.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Lin CY, Jo CH. Hydrogen production from sucrose using an anaerobic sequencing batch reactor process. J Chem Technol Biotechnol. 2003;78:678–84.CrossRefGoogle Scholar
  100. Lin CY, Lay CH. Effects of carbonate and phosphate concentrations on hydrogen production using anaerobic sewage sludge micro flora. Int J Hydrog Energy. 2004a;29:275–81.CrossRefGoogle Scholar
  101. Lin CY, Lay CH. A nutrient formulation for fermentative hydrogen production using anaerobic sewage sludge micro flora. Int J Hydrog Energy. 2004b;30:285–92.CrossRefGoogle Scholar
  102. Lindblad P, Christensson K, Lindberg P, Fedorov A, Pinto F, Tsygankov A. Photoproduction of H2 by wild type Anabaena PCC 7120 and a hydrogen uptake deficient mutant: from laboratory experiments to outdoor culture. Int J Hydrog Energy. 2002;27:1271–81.CrossRefGoogle Scholar
  103. Lo YC, Bai MD, Chen WM, Chang JS. Cellulosic hydrogen production with a sequencing bacterial hydrolysis and dark fermentation strategy. Bioresour Technol. 2008;99:8299–303.PubMedCrossRefPubMedCentralGoogle Scholar
  104. Lo YC, Bai MD, Chen WM, Lee KS, Chang JS. Biohydrogen production from cellulosic hydrolysate produced via temperature-shift enhanced bacterial cellulose hydrolysis. Bioresour Technol. 2009;100:5802–7.PubMedCrossRefPubMedCentralGoogle Scholar
  105. Long H, King PW, Ghirardi ML, Kim K. Hydrogenase/Ferredoxin charge-transfer complexes: effect of hydrogenase mutations on the complex association. J Phys Chem A. 2009;113:4060–7.PubMedCrossRefPubMedCentralGoogle Scholar
  106. Lubner CE, Applegate AM, Kn€orzer P, Ganago A, Bryant DA, Happe T, Golbeck JH. Solar hydrogen-producing bio-nano device outperforms natural photosynthesis. Proc Natl Acad Sci U S A. 2011;108:20988–91.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Luo G, Talebnia F, Karakashev D, Xie L, Zhou Q, Angelidaki I. Enhanced bioenergy recovery from rapeseed plant in a biorefinery concept. Bioresour Technol. 2011;102:1433–9.PubMedCrossRefPubMedCentralGoogle Scholar
  108. Mahro B, Grimme LH. H2 photo production by green algae: the significance of anaerobic pre-incubation periods and of high light intensities for H2 photo-productivity of Chlorella fusca. Arch Microbiol. 1982;132:82–6.CrossRefGoogle Scholar
  109. Mahro B, Grimme LH. Improving the photosynthetic H2 productivity of the green alga Chlorella fusca by physiologically directed O2 avoidance and ammonium stimulation. Arch Microbiol. 1986;144:25–8.CrossRefGoogle Scholar
  110. Makarova VV, Kosourov S, Krendeleva TE, Semin BK, Kukarskikh GP, Rubin AB, Sayre RT, et al. Photoproduction of hydrogen by sulfur deprived C. reinhardtii mutants with impaired photosystem II photochemical activity. Photosynth Res. 2007;94:79–89.PubMedCrossRefGoogle Scholar
  111. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339:823–6.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Maneeruttanarungroj C, Lindblad P, Incharoensakdi A. Sulfate permease (SulP) and hydrogenase (HydA) in the green alga Tetraspora sp. CU2551: dependence of gene expression on sulfur status in the medium. Int J Hydrog Energy. 2012;37:15105–16.CrossRefGoogle Scholar
  113. Markov SA. Hydrogen production in bioreactors: current trends. Energy Procedia. 2012;29(394):400.Google Scholar
  114. Masukawa H, Kitashima M, Inoue K, Sakurai H, Hausinger RP. Genetic engineering of cyanobacteria to enhance biohydrogen production from sunlight and water. AMBIO J Hum Environ. 2012;41(S2):169–73.CrossRefGoogle Scholar
  115. Mathews J, Yiwangb G. Metabolic pathway engineering for enhanced biohydrogen production. Int J Hydrog Energy. 2009;34(17):7404–16.CrossRefGoogle Scholar
  116. Mayfield SP, Kindle KL. Stable nuclear transformation of Chlamydomonas reinhardtii by using a C. reinhardtii gene as the selectable marker. Proc Natl Acad Sci U S A. 1990;87:2087–91.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M, et al. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol. 2000;122:127–35.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Meyer J. [FeFe] hydrogenases and their evolution: a genomic perspective. Cell Mol Life Sci. 2007;64:1063–84.PubMedCrossRefGoogle Scholar
  119. Meyer J, Gagnon J. Primary structure of hydrogenase I from Clostridium pasteurianum. Biochemistry. 1991;30:9697–704.PubMedCrossRefGoogle Scholar
  120. Miron AS, Gomez AC, Camacho FG, Grima EM, Chisti Y. Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. J Biotechnol. 1999;70:249–70.CrossRefGoogle Scholar
  121. Mizuno O, Ohara T, Shinya M, Noike T. Characteristics of hydrogen production from bean curd manufacturing waste by anaerobic microflora. Water Sci Technol. 2000;42:345–50.CrossRefGoogle Scholar
  122. Molina E, Fernández J, Acién FG, Chisti Y. Tubular photobioreactor design for algal cultures. J Biotechnol. 2001;92:113–31.PubMedCrossRefGoogle Scholar
  123. Moreira SM, Santos MM, Guilhermino L, Ribeiro R. Immobilization of the marine microalga Phaeodactylum tricornutum in alginate for in situ experiments: bead stability and suitability. Enzym Microb Technol. 2006;38:135–41.CrossRefGoogle Scholar
  124. Mussgnug JH, Thomas-Hall SR, Rupprecht J, Foo A, Klassen V, McDowall A, Schenk PM, et al. Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol J. 2007;5:802–14.PubMedCrossRefPubMedCentralGoogle Scholar
  125. Nagarajan D, Lee D-J, Kondo A, Chang JS. Recent insights into bio-hydrogen production by microalgae from bio-photolysis to dark fermentation. Bioresour Technol. 2017;227:373–87.CrossRefGoogle Scholar
  126. Nandi R, Sengupta S. Microbial production of hydrogen: an overview. Crit Rev Microbiol. 1998;24:61–84.PubMedCrossRefPubMedCentralGoogle Scholar
  127. Natali A, Croce R. Characterization of the major light-harvesting complexes (LHCBM) of the green alga Chlamydomonas reinhardtii. PLoS One. 2015;10:e0119211.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Niyogi KK. Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol. 1999;50:333–59.CrossRefGoogle Scholar
  129. Ntaikou I, Antonopoulou G, Lyberatos G. Biohydrogen production from biomass and wastes via dark fermentation: a review. Waste Biomass Valoriz. 2010;1:21–39.CrossRefGoogle Scholar
  130. Nyberg M, Heidorn T, Lindblad P. Hydrogen production by the engineered cyanobacterial strain Nostoc PCC 7120 D hupW examined in a flat panel photo bioreactor system. J Biotechnol. 2015;215:35–43.PubMedCrossRefPubMedCentralGoogle Scholar
  131. Obradovic A, Likozar B, Levec J. Catalytic surface development of novel nickel plate catalyst with combined thermally annealed platinum and alumina coatings for steam methane reforming. Int J Hydrog Energy. 2013;38:1419–29.CrossRefGoogle Scholar
  132. Oey M, Ross IL, Stephens E, Steinbeck J, Wolf J, Radzun KA, K€ugler J, et al. RNAi knock-down of LHCBM1, 2 and 3 increases photosynthetic H2 production efficiency of the green alga Chlamydomonas reinhardtii. PLoS One. 2013;8:e61375.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Oey M, Sawyer AL, Ross IL, Hankamer B. Challenges and opportunities for hydrogen production from microalgae. Plant Biotechnol J. 2016;14:1487–99.PubMedPubMedCentralCrossRefGoogle Scholar
  134. Ogbonna JC, Amano Y, Nakamura K, Yokotsuka K, Shimazu Y, Watanabe M, Hara S. A multistage bioreactor with replaceable bioplates for continuous wine fermentation. Am J Enol Vitic. 1989;40:292.Google Scholar
  135. Oh YK, Kim SH, Kim MS, Park S. Thermophilic biohydrogen production from glucose with trickling biofilter. Biotechnol Bioeng. 2006;88:690–8.CrossRefGoogle Scholar
  136. Oncel SS. Chapter 11: Biohydrogen from microalgae, uniting energy, life, and green future. In: Kim SK, editor. Handbook of marine microalgae. Elsevier; 2015. p. 159–196., Scholar
  137. Oncel S, Kose A. Comparison of tubular and panel type photobioreactors for biohydrogen production utilizing Chlamydomonas reinhardtii considering mixing time and light intensity. Bioresour Technol. 2014;151:265–70.PubMedCrossRefGoogle Scholar
  138. Oncel S, Vardar-Sukan F. Photo-bioproduction of hydrogen by Chlamydomonas reinhardtii using a semi-continuous process regime. Int J Hydrog Energy. 2009;34:7592–602.CrossRefGoogle Scholar
  139. Park JH, Yoon JJ, Park HD, Kim YJ, Lim DJ, Kim SH. Feasibility of biohydrogen production from Gelidium amansii. Int J Hydrog Energy. 2006;36:13997–4003.CrossRefGoogle Scholar
  140. Pascal AA, Liu Z, Broess K, van Oort B, van Amerongen H, Wang C, Horton P, et al. Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature. 2005;436:134–7.PubMedCrossRefGoogle Scholar
  141. Perkins J. Going commercial. BioFuels J. 2014;12:60–1.Google Scholar
  142. Perry JH. Chemical engineers’ handbook. New York: McGraw-Hill; 1963.Google Scholar
  143. Pinto TS, Malcata FX, Arrabaca JD, Silva JM, Spreitzer RJ, Esquıvel MG. Rubisco mutants of Chlamydomonas reinhardtii enhance photosynthetic hydrogen production. Appl Microbiol Biotechnol. 2013;97:5635–43.PubMedCrossRefGoogle Scholar
  144. Polle JEW, Kanakagiri S, Jin E, Masuda T, Melis A. Truncated chlorophyll antenna size of the photosystems – a practical method to improve microalgal productivity and hydrogen production in mass culture. Int J Hydrog Energy. 2002;27:1257–64.CrossRefGoogle Scholar
  145. Polle JEW, Kanakagiri SD, Melis A. Tla1, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size. Planta. 2003;217:49–59.PubMedGoogle Scholar
  146. Population Reference Bureau (PRB). 2013 world population data sheet. 2013. Accessed 29 Oct 2015.
  147. Pow T, Krasna AI. Photoproduction of hydrogen from water in hydrogenase-containing algae. Arch Biochem Biophys. 1979;194:413–21.PubMedCrossRefGoogle Scholar
  148. Ramachandran R, Menon RK. An overview of industrial uses of hydrogen. Int J Hydrog Energy. 1998;23:593–8.CrossRefGoogle Scholar
  149. Randt, Senger H. Participation of the two photosystems in light dependent hydrogen evolution in Scenedesmus obliquus. Photochem Photobiol. 1985;42:553–7.CrossRefGoogle Scholar
  150. Rashid N, Rehman MS, Memonb S, Rahman Z, Lee K, Han JI. Current status, barriers and developments in bio-hydrogen production by microalgae. Renew Sust Energ Rev. 2013;22:571–9.CrossRefGoogle Scholar
  151. Redwood MD, Beedle MP, Macaskie LE. Integrating dark and light bio-hydrogen production strategies: towards the hydrogen economy. Rev Environ Sci Biotechnol. 2009;8:149–85.CrossRefGoogle Scholar
  152. Reifschneider-Wegner K, Kanygin A, Redding KE. Expression of the [FeFe] hydrogenase in the chloroplast of Chlamydomonas reinhardtii. Int J Hydrog Energy. 2014;39:3657–65.CrossRefGoogle Scholar
  153. Robertson D, Boynton JE, Gillham NW. Cotranscription of the wild-type chloroplast atpE gene encoding the CF1/CF0 epsilon subunit with the 30 half of the rps7 gene in Chlamydomonas reinhardtii and characterization of frameshift mutations in atpE. Mol Gen Genet. 1990;221:155–63.PubMedCrossRefGoogle Scholar
  154. Rosenkrans AM, Krasna AI. Stimulation of hydrogen photoproduction in algae by removal of oxygen by reagents that combine reversibly with oxygen. Biotechnol Bioeng. 1984;26:1334–42.PubMedCrossRefGoogle Scholar
  155. Ruehle T, Hemschemeier A, Melis A, Happe T. A novel screening protocol for the isolation of hydrogen producing Chlamydomonas reinhardtii strains. BMC Plant Biol. 2008;8:107.CrossRefGoogle Scholar
  156. Rumpel S, Siebel JF, Fares C, Duan J, Reijerse E, Happe T, Lubitz W, et al. Enhancing hydrogen production of microalgae by redirecting electrons from photosystem I to hydrogenase. Energy Environ Sci. 2014;7:3296–301.CrossRefGoogle Scholar
  157. Sch€onfeld C, Wobbe L, Borgst€adt R, Kienast A, Nixon PJ, Kruse O. The nucleus-encoded protein MOC1 is essential for mitochondrial light acclimation in Chlamydomonas reinhardtii. J Biol Chem. 2004;279:50366–74.PubMedCrossRefPubMedCentralGoogle Scholar
  158. Schara V, Maeda GT, Wood TK. Metabolically engineered bacteria for producing hydrogen via fermentation. Microb Biotechnol. 2008;1(2):107–25.CrossRefGoogle Scholar
  159. Schulz R, Schnackenberg J, Stangier K, W€unschiers R, Zinn T, Senger H. Light-dependent hydrogen production of the green alga Scenedesmus obliquus. In: Zaborsky O, Benemann J, Matsunaga T, Miyake J, San Pietro A, editors. BioHydrogen. New York: Springer; 1998. p. 243–51.Google Scholar
  160. Scoma A, Krawietz D, Faraloni C, Giannelli L, Happe T, Torzillo G. Sustained H2 production in a Chlamydomonas reinhardtii D1 protein mutant. J Biotechnol. 2012;157:613–9.CrossRefGoogle Scholar
  161. Seibert M, Flynn T, Benson D, Tracy E, Ghirard M. Development of selection and screening procedures for rapid identification of H2-producing algal mutants with increased O2 tolerance. In: Zaborsky OR, editor. Biohydrogen. New York: Springer; 1998. p. 227–34.Google Scholar
  162. Sevda S, Bhattacharya S, Abu Reesh IM, Bhuvanesh S, Sreekrishnan TR. Challenges in the design and operation of an efficient photobioreactor for microalgae cultivation and hydrogen production. In: Singh A, Rathore D, editors. Biohydrogen production: sustainability of current technology and future perspective. New Delhi: Springer; 2017. p. 147–62.CrossRefGoogle Scholar
  163. Shima S, Pilak O, Vogt S, Schick M, Stagni MS, Klaucke WM, Warkentin E, Thauer RK, Ermler U. The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site. Science. 2008;321:572–5.PubMedCrossRefPubMedCentralGoogle Scholar
  164. Shimogawara K, Fujiwara S, Grossman A, Usuda H. High efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics. 1998;148:1821–8.PubMedPubMedCentralGoogle Scholar
  165. Show KY, Lee DJ, Chang JS. Bioreactor and process design for biohydrogen production. Bioresour Technol. 2011;102:8524–33.PubMedCrossRefGoogle Scholar
  166. Sizova I, Greiner A, Awasthi M, Kateriya S, Hegemann P. Nuclear gene targeting in Chlamydomonas using engineered zinc-finger nucleases. Plant J. 2013;73:873–82.PubMedCrossRefGoogle Scholar
  167. Skjånes K, Rebours C, Lindblad P. Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Crit Rev Biotechnol. 2013;33:172–215.PubMedCrossRefGoogle Scholar
  168. Slegers PM, van Beveren PJM, Wijffels RH, van Straten G, van Boxtel AJB. Scenario analysis of large scale algae production in tubular photobioreactors. Appl Energy. 2013;105:395–406.CrossRefGoogle Scholar
  169. Smith GD, Ewart GD, Tucker W. Hydrogen production by cyanobacteria. Int J Hydrog Energy. 1992;17:695–8.CrossRefGoogle Scholar
  170. Srirangan K, Pyne ME, Perry Chou C. Biochemical and genetic engineering strategies to enhance hydrogen production in photosynthetic algae and cyanobacteria. Bioresour Technol. 2011;102:8589–604.PubMedCrossRefGoogle Scholar
  171. Stiebritz MT, Reiher M. Hydrogenases and oxygen. Chem Sci. 2012;3:1739–51.CrossRefGoogle Scholar
  172. Sun Y, Chen M, Yang H, Zhang J, Kuang T, Huang F. Enhanced H2 photoproduction by down-regulation of ferredoxin-NADP(+) reductase (FNR) in the green alga Chlamydomonas reinhardtii. Int J Hydrog Energy. 2013;38:16029–37.CrossRefGoogle Scholar
  173. Surzycki R, Cournac L, Peltiert G, Rochaix JD. Potential for hydrogen production with inducible chloroplast gene expression in Chlamydomonas. Proc Natl Acad Sci U S A. 2007;104:17548–53.PubMedPubMedCentralCrossRefGoogle Scholar
  174. Takahashi H, Iwai M, Takahashi Y, Minagawa J. Identification of the mobile light-harvesting complex II polypeptides for state transitions in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A. 2006;103:477–82.PubMedPubMedCentralCrossRefGoogle Scholar
  175. Tamagnini P, Leitao E, Oliveira P, Ferreira D, Pinto F, Harris DJ, Heidorn T, Lindblad P. Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiol Rev. 2007;31:692–720.PubMedPubMedCentralCrossRefGoogle Scholar
  176. Tiwari MK, Guha S, Harendranath CS, Tripathi S. Influence of extrinsic factors on granulation in UASB reactor. Appl Microbiol Biotechnol. 2006;71:145–54.PubMedCrossRefPubMedCentralGoogle Scholar
  177. Tolleter D, Ghysels B, Alric J, Petroutso D, Tolstygina I, Krawietz D, Happe T, et al. Control of hydrogen photoproduction by the proton gradient generated by cyclic electron flow in Chlamydomonas reinhardtii. Plant Cell. 2011;23:2619–30.PubMedPubMedCentralCrossRefGoogle Scholar
  178. Torzillo G, Scoma A, Faraloni C, Ena A, Johanningmeier U. Increased hydrogen photoproduction by means of a sulfur-deprived Chlamydomonas reinhardtii D1 protein mutant. Int J Hydrog Energy. 2009;34:4529–36.CrossRefGoogle Scholar
  179. UN Report. Sustainable bioenergy: a framework for decision makers; 2007.Google Scholar
  180. Vogt S, Lyon EJ, Shima S, Thauer RK. The exchange activities of [Fe] hydrogenase (iron-sulfur-cluster-free hydrogenase) from methanogenic archaea in comparison with the exchange activities of [FeFe] and [NiFe] hydrogenases. J Biol Inorg Chem. 2008;13:97–106.PubMedCrossRefPubMedCentralGoogle Scholar
  181. Volgusheva A, Kukarskikh G, Krendeleva T, Rubin A, Mamedov F. Hydrogen photoproduction in green algae Chlamydomonas reinhardtii under magnesium deprivation. RSC Adv. 2015;5:5633–563.CrossRefGoogle Scholar
  182. Wang J, Wan W. Factors influencing fermentative hydrogen production: a review. Int J Hydrog Energy. 2009;34:799–811.CrossRefGoogle Scholar
  183. Wang RN, Cao AG, Xu J, Gao L. Bioconversion of lignocellulosic biomass to hydrogen: potential and challenges. Biotechnol Adv. 2009;27:1051–60.PubMedCrossRefGoogle Scholar
  184. Wang A, Sun D, Cao G, Wang H, Ren NQ, Wu WM, Logan BE. Integrated hydrogen production process from cellulose by combining dark fermentation microbial fuel cells, and a microbial electrolysis cell. Bioresour Technol. 2011;102:4137–43.PubMedCrossRefGoogle Scholar
  185. Weare NM, Benemann JR. Nitrogenase activity and photosynthesis in Plectonema boryanum. J Bacteriol. 1974;119:258–65.PubMedPubMedCentralGoogle Scholar
  186. Wecker MSA, Ghirardi ML. High-throughput biosensor discriminates between different algal H2-photoproducing strains. Biotechnol Bioeng. 2014;111:1332–40.PubMedCrossRefPubMedCentralGoogle Scholar
  187. Welch C. Carbon emissions had leveled off, now they’re rising again. Natl Geogr. 2017. emissions-rising-environment/
  188. Winkler M, Hemschemeier A, Gotor C, Melis A, Happe T, et al. [Fe]-hydrogenase in green algae: photo-fermentation and hydrogen evolution under sulphur deprivation. Int J Hydrog Energy. 2002;27:1431–9.CrossRefGoogle Scholar
  189. Winkler M, Kuhlgert S, Hippler M, Happe T. Characterization of the key step for light-driven hydrogen evolution in green algae. J Biol Chem. 2009;284:36620–7.PubMedPubMedCentralCrossRefGoogle Scholar
  190. Winkler M, Kawelke S, Happe T. Light driven hydrogen production in protein based semi-artificial systems. Bioresour Technol. 2011;102:8493–500.PubMedCrossRefPubMedCentralGoogle Scholar
  191. Wittenberg G, Sheffler W, Darchi D, Baker D, Noy D. Accelerated electron transport from photosystem I to redox partners by covalently linked ferredoxin. Phys Chem Chem Phys. 2013;15:19608–14.PubMedCrossRefPubMedCentralGoogle Scholar
  192. Wu S, Huang R, Xu L, Yan G, Wang Q. Improved hydrogen production with expression of hemH and lba genes in chloroplast of Chlamydomonas reinhardtii. J Biotechnol. 2010;146:120–5.PubMedCrossRefPubMedCentralGoogle Scholar
  193. Wu S, Xu L, Huang R, Wang Q. Improved biohydrogen production with an expression of codon-optimized hemH and lba genes in the chloroplast of Chlamydomonas reinhardtii. Bioresour Technol. 2011;102:2610–6.PubMedCrossRefPubMedCentralGoogle Scholar
  194. Yacoby I, Pochekailov S, Toporik H, Ghirardi ML, King PW, Zhang S. Photosynthetic electron partitioning between FeFe -hydrogenase and ferredoxin: NADP(+)-oxidoreductase (FNR) enzymes in vitro. Proc Natl Acad Sci U S A. 2011;108:9396–401.PubMedPubMedCentralCrossRefGoogle Scholar
  195. Yeom SH, Yoo YJ. Removal of benzene in a hybrid bioreactor. Process Biochem. 1999;34(3):281–8.CrossRefGoogle Scholar
  196. Yilmaz F, Balta MT, Selbas R. A review of solar based hydrogen production methods. Renew Sust Energ Rev. 2016;56:171–8.CrossRefGoogle Scholar
  197. Yokoi H, Saitsu A, Uchida H, Hirose J, Hayashi S, Takasaki Y. Microbial hydrogen production from sweet potato starch residue. J Biosci Bioeng. 2001;91:58–63.PubMedCrossRefGoogle Scholar
  198. Yoon JH, Shin JH, Kim MS, Sim SJ, Park TH. Evaluation of conversion efficiency of light to hydrogen energy by Anabaena variabilis. Int J Hydrog Energy. 2006;31:721–7.CrossRefGoogle Scholar
  199. Younesi H, Najafpour G, Ismail KSK, Mohamed AR, Kamaruddin AH. Biohydrogen production in a continuous stirred tank bioreactor from synthesis gas by anaerobi photosynthetic bacterium: Rhodopirillum rubrum. Bioresour Technol. 2008;99(7):2612–9.PubMedCrossRefGoogle Scholar
  200. Zhang ZP, Adav SS, Show KY, Tay JH, Liang DT, Lee DJ, Jiang. Effect of hydraulic retention time on biohydrogen production and anaerobic microbial community. Process Biochem. 2006a;41:2118–23.CrossRefGoogle Scholar
  201. Zhang HS, Bruns MA, Logan BE. Biological hydrogen production by Clostridium acetobutylicum in an unsaturated flow reactor. Water Res. 2006b;40:728–34.PubMedCrossRefGoogle Scholar
  202. Zhang ZP, Adav SS, Show KY, Tay JH, Liang DT, Lee DJ. Characteristics of rapidly formed hydrogen-producing granules and biofilms. Biotechnol Bioeng. 2008a;101:926–36.PubMedCrossRefGoogle Scholar
  203. Zhang ZP, Show KY, Tay JH, Liang TD, Lee DJ. Enhanced continuous biohydrogen production by immobilized anaerobic microflora. Energy Fuel. 2008b;22:87–92.CrossRefGoogle Scholar
  204. Zhang R, Patena W, Armbruster U, Gang SS, Blum SR, Jonikas MC. High-throughput genotyping of green algal mutants reveals random distribution of mutagenic insertion sites and endonucleolytic cleavage of transforming DNA. Plant Cell. 2014;26:1398–409.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Mamudul Hasan Razu
    • 1
  • Farzana Hossain
    • 1
  • Mala Khan
    • 1
  1. 1.Designated Reference Institute for Chemical Measurements, BCSIRDhakaBangladesh

Personalised recommendations