Alcaraz N, Pauling J, Batra R, Barbosa E, Junge A, Christensen AG, Azevedo V, Ditzel HJ, Baumbach J (2014) KeyPathwayMiner 4.0: condition-specific pathway analysis by combining multiple omics studies and networks with Cytoscape. BMC Syst Biol 8:99
CrossRef
Google Scholar
Allen F, Greiner R, Wishart D (2015) Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification. Metabolomics 11:98–110
CAS
CrossRef
Google Scholar
Ara T, Enomoto M, Arita M, Ikeda C, Kera K, Yamada M, Nishioka T, Ikeda T, Nihei Y, Shibata D, Kanaya S, Sakurai N (2015) Metabolonote: a wiki-based database for managing hierarchical metadata of metabolome analyses. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2015.00038
Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26
CAS
CrossRef
Google Scholar
Broeckling CD, Afsar FA, Neumann S, Ben-Hur A, Prenni JE (2015) RAMClust: a novel feature clustering method enables spectral-matching-based annotation for metabolomics data. Anal Chem 86:6812–6817
CrossRef
Google Scholar
Cicek AE, Qi X, Cakmak A, Johnson SR, Han X, Alshalwi S, Ozsoyoglu ZM, Ozsoyoglu G (2014) An online system for metabolic network analysis. Database (Oxford) pii: bau091. https://doi.org/10.1093/database/bau091
CrossRef
Google Scholar
Coble JB, Fraga CG (2014) Comparative evaluation of preprocessing freeware on chromatography/mass spectroscopy data for signature discovery. J Chromatogr A 1358:155–164
CAS
CrossRef
Google Scholar
Daly R, Rogers S, Wandy J, Jankevics A, Burgess KE, Breitling R (2014) MetAssign: probabilistic annotation of metabolites from LC-MS data using a Bayesian clustering approach. Bioinformatics 30:2764–2771
CAS
CrossRef
Google Scholar
Dhanasekaran AR, Pearson JL, Ganesan B, Weimer BC (2015) Metabolome searcher: a high throughput tool for metabolite identification and metabolic pathway mapping directly from mass spectroscopy and using genome restriction. BMC Bioinform 16:62
CrossRef
Google Scholar
Doerfler H, Sun X, Wang L, Engelmeier D, Lyon D, Weckwerth W (2014) mzGroupAnalyzer-predicting pathways and novel chemical structures from untargeted high-throughput metabolomics data. PloS One 9:e96188
CrossRef
Google Scholar
Edmands WM, Barupal DK, Scalbert A (2014) MetMSLine: an automated and fully integrated pipeline for rapid processing of high-resolution LC-MS metabolomics datasets. Bioinformatics 31:788–790
CrossRef
Google Scholar
Fernández-Albert F, Llorach R, Andrés-Lacueva C, Perera A (2014) An R package to analyse LC/MS metabolomics data: MAIT (metabolite automatic identification toolkit). Bioinformatics 30:1937–1939
CrossRef
Google Scholar
French WR, Zimmerman LJ, Schilling B, Gibson BW, Miller CA, Townsend RR, Sherrod SD, Goodwin CR, McLean JA, Tabb DL (2014) Wavelet-based peak detection and a new charge inference procedure for MS/MS implemented in proteoWizard’s msConvert. J Proteome Res 14:1299–1307
CrossRef
Google Scholar
Garg N, Conrad D, Dorrestein P (2015) Metabolomics by mass spectrometry based molecular networking and spatial mapping. FASEB J 29:369–371
Google Scholar
Grapov D, Fahrmann J, Hwang J, Poudel A, Jo J, Periwal V, Fiehn O, Hara M (2015) Diabetes associated metabolomics perturbations in NOD mice. Metabolomics 11:425–437
CAS
CrossRef
Google Scholar
Griss J, Jones AR, Sachsenberg T, Walzer M, Gatto L, Hartler J, Thallinger GG, Salek RM, Steinbeck C, Neuhauser N, Cox J, Neumann S, Fan J, Reisinger F, Xu QW, Del Toro N, Pérez-Riverol Y, Ghali F, Bandeira N, Xenarios I, Kohlbacher O, Vizcaíno JA, Hermjakob H (2014) The mzTab data exchange format: communicating mass-spectrometry-based proteomics and metabolomics experimental results to a wider audience. Mol. Cell Proteomics 13:2765–2775
CAS
CrossRef
Google Scholar
Hamdalla MA, Rajasekaran S, Grant DF, Măndoiu II (2015) Metabolic pathway predictions for metabolomics: a molecular structure matching approach. J Chem Inf Model 55:709–718
CAS
CrossRef
Google Scholar
Haug K, Salek RM, Conesa P, Hastings J, de Matos P, Rijnbeek M, Mahendraker T, Williams M, Neumann S, Rocca-Serra P, Maguire E, González-Beltràn A, Sansone SA, Griffin JL, Steinbeck C (2012) MetaboLights-an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Res 41:D781–D786
CrossRef
Google Scholar
Jeffryes JG, Colastani RL, Elbadawi-Sidhu M, Kind T, Niehaus TD, Broadbelt LJ, Hanson AD, Fiehn O, Tyo KE, Henry CS (2015) MINE: open access databases of computationally predicted enzyme promiscuity products for untargeted metabolomics. J Cheminform 7:44
CrossRef
Google Scholar
Johnson SR, Lange BM (2015) Open-access metabolomics databases for natural product research: present capabilities and future potential. Front Bioeng Biotechnol 3:1–10
CrossRef
Google Scholar
Kaever A, Landesfeind M, Feussner K, Mosblech A, Heilmann I, Morgenstern B, Feussner I, Meinicke P (2015) MarVis-pathway: integrative and exploratory pathway analysis of non-targeted metabolomics data. Metabolomics 11:764–777
CAS
CrossRef
Google Scholar
Kessner D, Chambers M, Burke R, Agus D, Mallick P (2008) ProteoWizard: open source software for rapid protemomics tools development. Bioinformatics 24:2534–2536
CAS
CrossRef
Google Scholar
Kim S, Fang A, Wang B, Jeong J, Zhang X (2011) An optimal peak alignment for comprehensive two-dimensional gas chromatography mass spectrometry using mixture similarity measure. Bioinformatics 27:1660–1666
CAS
CrossRef
Google Scholar
Kirwan JA, Weber RJ, Broadhurst DI, Viant MR (2014) Direct infusion mass spectrometry metabolomics dataset: a benchmark for data processing and quality control. Sci Data 1:140012
CAS
CrossRef
Google Scholar
Kotera M, Tabei Y, Yamanishi Y, Muto A, Moriya Y, Tokimatsu T, Goto S (2014) Metabolome-scale prediction of intermediate compounds in multistep metabolic pathways with a recursive supervised approach. Bioinformatics 30:i165–i174
CAS
CrossRef
Google Scholar
Lee HS, Jo S, Mukherjee S, Park SJ, Skolnick J, Lee J, Im W (2015) GS-align for glycan strcutre alignment and similarity measurement. Bioinformatics 31:2653–2659
CAS
CrossRef
Google Scholar
Li JW, Vederas JC (2009) Drug discovery and natural products: end of an era or an endless frontier? Science 325:161–165
CrossRef
Google Scholar
Liu Y, Liang Y, Wishart D (2015) PolySearch2: a significantly improved text-mining system for discovering associations between human diseases, genes, drugs, metabolites, toxins and more. Nucleic Acids Res 43:W535–W542
CAS
CrossRef
Google Scholar
Newman DJ, Cragg GM (2012) Natural products as source of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335
CAS
CrossRef
Google Scholar
Nikolskiy I, Siuzdak G, Patti GJ (2015) Discriminating precursors of common fragments for large-scale metabolite profiling by triple quadrupole mass spectrometry. Bioinformatics 31:2017–2023
CAS
CrossRef
Google Scholar
Ogura T, Bamba T, Tai A, Fukusaki E (2015) Method for the compound annotation of conjugates in nontargeted metabolomics using accurate mass spectroscopy, multistage product ion spectra and compound database searching. Mass Spectrom 4:A0036
CrossRef
Google Scholar
Ohtana Y, Abdullah AA, Altaf-Ul-Amin M, Huang M, Ono N, Sato T, Sugiura T, Horai H, Nakamura Y, Morita HA, Lange KW, Kibinge NK, Katsuragi T, Shirai T, Kanaya S (2014) Clustering of 3D-strcuture similarity based network of secondary metabolites reveals their relationship with biological activities. Mol Inform 33:790–801
CAS
PubMed
Google Scholar
Over B, Wetzel S, Grutter C, Nakai Y, Renner S, Rauh D, Waldmann H (2013) Natural-product-derived fragments for fragment-based ligand discovery. Nat Chem 5:21–28
CAS
CrossRef
Google Scholar
Pluskal T, Castillo S, Villar-Briones A, Oresic M (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectroscopy. BMC Bioinform 11:395
CrossRef
Google Scholar
Pon A, Jewison T, Su Y, Liang Y, Knox C, Maciejewski A, Wilson M, Wishart DS (2015) Pathways with PathWhiz. Nucleic Acids Res 43:W552–W559
CAS
CrossRef
Google Scholar
Rolda’n C, de la Torre A, Mota S, Mprales-Soto A, Menendez J, Segura-Carretero A (2013) Idetification of active compounds in vegetal extracts based on correlation between activity and HPLC-MS data. Food Chem 136:392–399
CrossRef
Google Scholar
Sakurai N, Ara T, Enomoto M, Motegi T, Morishita Y, Kurabayashi A, Iijima Y, Ogata Y, Nakajima D, Suzuki H, Shibata D (2014) Tools and databases of the KOMICS web portal for preprocessing, mining, and dissemination of metabolomics data. Biomed Res Int 2014:194812
CrossRef
Google Scholar
Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G (2006) XCMS: Processing Mass Spectroscopy data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78:779–787
CAS
CrossRef
Google Scholar
Sun H, Wang H, Zhu R, Tang K, Gong Q, Cui J, Cao Z, Liu Q (2014) iPEAP: integrating multiple omics and genetic data for pathway enrichment analysis. Bioinformatics 30:737–739
CAS
CrossRef
Google Scholar
Tengstrand E, Lindberg J, Aberg KM (2014) TracMass 2-a modular suite of tools for processing chromatography-full scan mass spectroscopy data. Anal Chem 86:3435–3442
CAS
CrossRef
Google Scholar
Winnikoff JR, Glukhov E, Watrous J, Dorrestein PC, Gerwick WH (2014) Quantitative molecular networking to profile marine cyanobacterial metabolomes. J Antibiot 67:105–112
CAS
CrossRef
Google Scholar
Wishart DS (2008) Quantitative metabolomics using NMR. TrAC Trends Anal Chem 27:228–237
CAS
CrossRef
Google Scholar
Xu QW, Griss J, Wang R, Jones AR, Hermjakob H, VizcaÍno J (2014) A (2014) jmzTab: a java interface to the mzTab data standard. Proteomics 14:1328–1332
CAS
CrossRef
Google Scholar
Yu T, Jones DP (2014) Improving peak detection in high-resolution LC/MS metabolomics data using preexisting knowledge and machine learning approach. Bioinformatics 30:2941–2948
CAS
CrossRef
Google Scholar
Zhu ZJ, Schultz AW, Wang J, Johnson CH, Yannone SM, Patti GJ, Siuzdak G (2013) Liquid chromatography quadrupole time-of-flight mass spectrometry characterization of metabolites guided by the METLIN database. Nat Prot 8:451–460
CAS
CrossRef
Google Scholar