Skip to main content

Phytoremediation of Metal and Metalloids from Contaminated Soil

  • Chapter
  • First Online:
Plants Under Metal and Metalloid Stress

Abstract

Many of heavy metals in soil are essential nutrients for plant species, when they are presented in low to reasonable contents. However, if they are extremely toxic, they would be hazardous; and some may form free radicals. The principal causes of heavy metal contamination in soils can be deposition of pollutants on the soil; industrial sewage effluents whether disposed into water bodies or directly on the soil; sewage sediments; polluted organic manures and mineral fertilizers; pesticide chemicals and vehicles exhaust fumes. Remediation of the environment to get rid of such noxious toxic metals and materials is highly costly. Safe non-costly methods are through using plants to remove such metals and toxic pollutants, i.e. phytoremediation. In the current chapter, remediation methods of contaminated soil and hyper accumulator plants were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Mageed A, Sadik MW, Al-Shahrani HO, Ali HM (2013) Phyto microbial degradation of glyphosphate in Riyadh area. Int J Microbiol Res 5:458–466

    Article  Google Scholar 

  • Abdel-Megeed A, Abou-Elseoud II, Mostafa AA, Al-Ramah AN, Eifan SA (2012) Biodegradation of mineral oil by bacterial strains isolated from contaminated soils. Afr J Microbiol Res 6:6994–7002

    CAS  Google Scholar 

  • Abdel-Salam AA, Salem HM, Abdel-Salam MA, Seleiman MF (2015) Phytochemical removal of Heavy metal-contaminated soil. In: Sherameti I, Varma A (eds) Heavy metal contamination of soils: monitoring and remediation. Springer, Cham, pp 299–311

    Google Scholar 

  • Adriano DC (1986) Trace elements in the terrestrial environment. Springer, New York

    Book  Google Scholar 

  • Ahmad R, Misra N (2014) Evaluation of phytoremediation potential of Catharanthus roseus with respect to chromium contamination. Am J Plant Sci 5:2378–2388

    Article  Google Scholar 

  • Alloway BJ (1990) Heavy metals in soils. Blackie, Glasgow

    Google Scholar 

  • Alloway BJ (2013) Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Springer, London

    Book  Google Scholar 

  • Alloway BJ, Jackson AP (1991) The behavior of heavy metals in sewage- sludge amended soils. Sci Total Environ 100:151–176

    Article  CAS  Google Scholar 

  • Anon (2013) Stinging nettle. Ohio Agricultural Research and Development Center, Ohio State University, Columbus

    Google Scholar 

  • Anon (2017) Phytoextraction coefficient. TERMIUM Plus, the government of Canada’s terminology and linguistic data bank, Canada. Environment 4:24–30

    Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyper-accumulate metalic elements. A review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Bandiera M, Dal-Cortivo C, Barion G, Mosca G, Vamerali T (2016) Phytoremediation opportunities with Alimurgic species in metal-contaminated environments. Sustainability 8:357–368

    Article  Google Scholar 

  • Bethany L (2017) Soil contamination: its causes, effects, and solutions. Permaculture Research Institute (PRI), NSW

    Google Scholar 

  • Bizily SP, Kim T, Kandasamy MK, Meagher RB (2003) Subcellular targeting of methylmercury lyase enhances its specific activity for organic mercury detoxification in plants. Plant Physiol 131:463–471

    Article  CAS  Google Scholar 

  • Buhari ML, Babura SR, Vyas NL, Badaru S, Harisu OY (2016) Role of biotechnology in phytoremediation. J Bioremed Biodegr 7:330–339

    Google Scholar 

  • De-Valle-Zermeno R, Formosa J, Chimenos JM (2015) Low-grade magnesium oxide by-products for environmental solutions: characterization and geochemical performance. J Geochem Explor 152:143–144

    Google Scholar 

  • Dushenkov D (2003) Trends in phytoremediation of radionuclides. Plant Soil 249:167–175

    Article  CAS  Google Scholar 

  • Eapen S, D’Souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23:97–114

    Article  CAS  Google Scholar 

  • Ebbs SD, Kochian LV (1997) Toxicity of Zn and Cu to Brassica species: implications for phytoremediation. J Environ Qual 26:776–781

    Article  CAS  Google Scholar 

  • Errami E, Seghedi A (2016) Building bridges between earth scientists worldwide: a way for promoting peace and strengthening integration. 8th Conference. Association of African Women in Geosciences (AAWG), 1–7 October 2016 Sibiu

    Google Scholar 

  • Favas JC, Pratas J, Varun M, D’Souza R, Paul MS (2014) Phyto-remediation of soils contaminated with metals and metalloids at mining areas: potential of native flora. In Tech Publ, Rijeka

    Google Scholar 

  • Ghosg M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. As J Energy Environ 6:214–231

    Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    Article  CAS  Google Scholar 

  • Gomes HI, Dias-Ferreira C, Ribeiro AB (2013) Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application. Sci Total Environ 445:237–260

    Article  Google Scholar 

  • Hartman WJ (1975) An evaluation of land treatment of municipal wastewater and physical siting of facility installations. U.S. Department of the Army, Washington, DC

    Google Scholar 

  • Heaton AC, Rugh CC, Kim T, Meagher RB (2003) Toward detoxifying mercury-polluted aquatic sediments with rice genetically engineered for mercury resistance. Environ Toxicol Chem 22:2940–2947

    Article  CAS  Google Scholar 

  • Henry JR (2000) An overview of phytoremediation of lead and mercury. A Report by the Nat. Network for Environ. Management Studies (NNEMS) Washington, DC

    Google Scholar 

  • Hooda PH (2010) Trace elements in soils. Wiley, Chichester

    Book  Google Scholar 

  • Ijaz A, Imran A, Ul-Haq MA, Khan QM, Afza M (2016) Phyto-remediation: recent advances in plant-endophytic synergistic interactions. Plant Soil 405:179–195

    Article  CAS  Google Scholar 

  • Kabata A, Mukhergee AB (2007) Trace elements from soil to human. Springer, Berlin

    Book  Google Scholar 

  • Karenlampi S, Schat H, Vangronsveld J, Verkleij JAC, Van-der-Lelie Mergeay D, Mergeay M, Tervahauta AI (2000) Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. Environ Pollut 107:225–231

    Article  CAS  Google Scholar 

  • Kinnersley AM (1993) The role of phyto-chelates in plant growth and productivity. J Plant Growth Regul 12:207–217

    Article  CAS  Google Scholar 

  • Kuiper I, Bloemberg GV, Lugtenberg BJJ (2001) Selection of a plant bacterium pair as a novel tool for rhizo-stimulation of polycyclic aromatic hydrocarbon degrading bacteria. Mol Plant-Microbe Interact 14:1197–1205

    Article  CAS  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizo-remediation: a beneficial plant microbe interaction. Mol Plant-Microbe Interact 7:6–15

    Article  Google Scholar 

  • McGrath SP (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282

    Article  CAS  Google Scholar 

  • McLaughlin MJ, Hamon RE, McLaren TG, Speir TW, Rogers SL (2000) Review: a bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand. Aust J Soil Res 38:1037–1086

    Article  CAS  Google Scholar 

  • McNeil KR, Waring S (1992) Contaminated land treatment. In: Whitacre DM (ed) Review of environmental contamination and toxicology. Springer, New York

    Google Scholar 

  • Meagher RB, Rugh CL, Kandasoamy MK, Gragson G, Wang NJ (2000) Engineered phytoremediation of mercury pollution in soil and water using bacterial genes. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. CRC Press, London, pp 202–233

    Google Scholar 

  • Mench MJ, Didier VL, Löffler M, Gomez A, Masson P (1994) A mimicked in situ remediation study of metal-contaminated soils with emphasis on cadmium and lead. J Environ Qual 23:58–63

    Article  CAS  Google Scholar 

  • Millaleo R, Reyes-Diaz M, Ivanov AG, Mora ML, Alberdi M (2010) Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. J Soil Sci Plant Nutr 10:470–481

    Article  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs B (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 6:193–207

    Article  Google Scholar 

  • Patra M, Bhowmik N, Bandopadhyay B, Sharma A (2004) Comparison of mercury, lead and arsenic with respect to geno-toxic effects on plant systems and development of genetic tolerance. Environ Exp Bot 52:199–223

    Article  CAS  Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees: a review. Environ Int 29:529–540

    Article  CAS  Google Scholar 

  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals usingplants to remove pollutants from the environment. Curr Opin Biotechnol 8:221–226

    Article  CAS  Google Scholar 

  • Roberts L, Brower A, Kerr G, Lambert S, McWilliam W, Moore K, Quinn J, Simmons D, Thrush S, Townsend M, Blaschke P, Costanza R, Cullen R, Hughey K, Wratten S (2015) The nature of wellbeing: How nature’s ecosystem services contribute to the well-being of New Zealand and New-Zealanders. Department of Conservation, Wellington

    Google Scholar 

  • Robinson BH, Chiarucci A, Brooks RR, Petit D, Kirkman JH, Gregg PE, De-Dominicis V (1997) The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. J Geochem Explor 59:75–86

    Article  CAS  Google Scholar 

  • Rugh CL, Wilde HD, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci U S A 93:3182–3187

    Article  CAS  Google Scholar 

  • Ruiz ON, Daniell H (2009) Genitic engineering to enhance mercury phytoremediation. Curr Opin Biotechnol 20:213–219

    Article  CAS  Google Scholar 

  • Salem HM, Abdel-Salam A, Abdel-Salam MA, Seleiman MF (2017) Soil xenobiotics and their phyto-chemical remediation. In: Hashmi MZ, Kumar V, Varma A (eds) Xenobiotics in soil environment: monitoring, toxicity and management. Springer, Cham, pp 276–280

    Google Scholar 

  • Singh A, Fulekar MH (2012) Phytoremediation of heavy metals by Brassica juncea in Aquatic and terrestrial environment. In: Anjum NA, Ahmad I, Pereira ME, Duarte AC, Umar S, Khan NA (eds) The plant family Brassicaceae: contribution towards phytoremediation. Springer, Cham, pp 153–169

    Chapter  Google Scholar 

  • Smith B (1993) Remediation update funding the remedy. Waste Manage Environ 249:167–175

    Google Scholar 

  • Sriprang R, Hayashi M, Yamashita M, Ono H, Saeki K, Murooka Y (2002) A novel bioremediation system for heavy metals using the symbiosis between leguminous plant and genetically engineered rhizobia. J Biotechnol 99:279–293

    Article  CAS  Google Scholar 

  • Steele MC, Pichtel J (1998) Ex-situ remediation of a metal-contaminated superfund soil using selective extractants. J Environ Eng 124:225–230

    Article  Google Scholar 

  • Stomp AM, Han KH, Wilbert S, Gordon MP, Cunningham SD (1994) Genetic strategies for enhancing phytoremediation. Ann N Y Acad Sci 721:481–492

    Article  CAS  Google Scholar 

  • Tangahu BV, Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A Review on heavy metals (As, Pb, and Hg), uptake by plants through phytoremediation. Int J Chem Eng Appl 2011:30–61

    Google Scholar 

  • Terry N, Banuelos G (2000) Phytoremediation of contaminated soil and water. Lewis Publ, New York

    Google Scholar 

  • Tiwar KK, Dwivedi S, Mishra S, Srivastava S, Tripathi RD, Singh NK, Chakraborty S (2008) Phytoremediation efficiency of Portulaca tuberosa rox and Portulaca oleracea L. naturally growing in an industrial effluent irrigated area in Vadodra, Gujrat, India. Environ Monit Assess 147:15–22

    Article  Google Scholar 

  • Virkutyte J, Sillanpaa M, Latostenmaa P (2002) Electrokinetic soil remediation: critical overview. Sci Total Environ 289:97–121

    Article  CAS  Google Scholar 

  • Vodyanitskii YN (2013) Contamination of soils with heavy metals and metalloids and its ecological hazard (analytic review). Eurasian Soil Sci 46:793–801

    Google Scholar 

  • Wohrl D (1994) Macromolecular metal complexes: an overview. Macromol Symp 80:1–15

    Article  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:402647. https://doi.org/10.5402/2011/402647

    Article  Google Scholar 

  • Yang H, Nairn J, Ozias-Akins P (2003) Transformation of peanut using a modified bacterial mercuric ion reductase gene driven by an actin promoter from Arabidopsis thaliana. J Plant Physiol 160:945–952

    Article  CAS  Google Scholar 

  • Yousef KA, Oluwole SO (2009) Heavy metals (Cu, ZN, Pb) contamination of vegetables in urban cities: a case study in Lagos. Res J Environ Sci 30:292–298

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud F. Seleiman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salem, H.M., Abdel-Salam, A., Abdel-Salam, M.A., Seleiman, M.F. (2018). Phytoremediation of Metal and Metalloids from Contaminated Soil. In: Hasanuzzaman, M., Nahar, K., Fujita, M. (eds) Plants Under Metal and Metalloid Stress. Springer, Singapore. https://doi.org/10.1007/978-981-13-2242-6_9

Download citation

Publish with us

Policies and ethics