Skip to main content

Arsenic in Rice: An Overview on Stress Implications, Tolerance and Mitigation Strategies

Abstract

Majority of world’s inhabitants consume rice (Oryza sativa L.) and rice products as staple food and major source of carbohydrate. Rice is a strong accumulator of inorganic arsenic (As). Arsenic enters into rice as a result of extensive use of As-contaminated ground water for irrigation of rice field and several other natural or anthropogenic factors. As is non-biodegradable and remains persistent in the soil for a long period of time, thereby enters into the food chain, exerting hazardous impacts on animal health. In comparison to other cereal crops, rice being an efficient arsenic bio-accumulator, the nutritional quality of rice is severely affected due to As toxicity. It enters into the rice system and accumulates through different root transporters – phosphate transporters for As(V), noduline 26-like intrinsic proteins (NIPs) for As (III) and membrane bound aquaporin channels. Researches have been focused to understand and mitigate the impact of arsenic toxicity on rice by evaluating various complex physio-molecular mechanisms associated with the arsenic transport. Screening of the landraces and other genetic stocks for better tolerance and/or resistance nature and incorporation in the breeding strategy, changing in agronomical and cultural practices, biotechnological approaches, etc. appear to be immensely important to understand the impact of the metalloid (like arsenic) in rice. This chapter encompasses the physiological and molecular insight of As transport, accumulation, tolerance and mitigation strategies towards the rice improvement program with a concern of health hazard.

Keywords

  • Arsenic
  • Rice
  • Transporters
  • Metalloid stress
  • Health hazard
  • Nutrient management
  • Transgenics

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-13-2242-6_15
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-981-13-2242-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 15.1
Fig. 15.2

Abbreviations

AM:

Arbuscular mycorrhiza

AR:

Arsenate reductase

As:

Arsenic

BS:

Bundle sheath

CS:

Casperian strip

DMA:

Dimethylarsinic acid

GSH:

Reduced glutathione

GSSG:

Oxidised glutathione

Lsi:

Silicon and/or arsenic transporter

MMA:

Monomethylarsonic acid

MT:

Metallothionine

NIP:

Noduline 26 like intrinsic protein

NRAMP:

Natural resistance associated macrophage protein

PC:

Phytochelatins

PCC:

Phloem companion cell

PCS:

Phytochelatin synthase

PSR:

Phosphate starvation response

PT:

Phosphate transporter

ROS:

Reactive oxygen species

TMA:

Trimethylarsine

XTC:

Xylem transfer cell

References

  • Abedin MJ, Feldmann J, Meharg AA (2002) Uptake kinetics of arsenic species in rice plants. Plant Physiol 128:1120–1128

    CAS  CrossRef  Google Scholar 

  • Ali W, Isayenkov SV, Zhao FJ, Maathuis FJM (2009) Arsenic transport in plants. Cell Mol Life Sci 66:2329–2339

    CAS  CrossRef  Google Scholar 

  • Arao T, Kawasaki A, Baba K, Matsumoto S (2011) Effects of arsenic compound amendment on arsenic speciation in rice grain. Environ Sci Technol 45:1291–1297

    CAS  CrossRef  Google Scholar 

  • Bakhat HF, Zia Z, Fahad S, Abbas S, Hammad HM, Shahzad AN, Abbas F, Alharby H, Shahid M (2017) Arsenic uptake, accumulation and toxicity in rice plants: possible remedies for its detoxification: a review. Environ Sci Pollut Res 24:9142–9158

    CAS  CrossRef  Google Scholar 

  • Belouchi A, Kwan T, Gros P (1997) Cloning and characterization of the OsNramp family from Oryza sativa, a new family of membrane proteins possibly implicated in the transport of metal ions. Plant Mol Biol 33:1085–1092

    CAS  CrossRef  Google Scholar 

  • Bhattacharya P, Samal AC, Majumdar J, Santra SC (2010) Accumulation of arsenic and its distribution in rice plant (Oryza sativa L.) in Gangetic West Bengal, India. Paddy Water Environ 8(1):63–70

    CrossRef  Google Scholar 

  • Bogdan K, Schenk MK (2009) Evaluation of soil characteristics potentially affecting arsenic concentration in paddy rice (Oryza sativa L.). Environ Pollut 157:2617–2621

    CAS  CrossRef  Google Scholar 

  • Booth B (2009) Cancer rates attributable to arsenic in rice vary globally. Environ Sci Technol 43(5):1243–1244

    CAS  CrossRef  Google Scholar 

  • Brammer H, Ravenscroft P (2009) Arsenic in ground water: a threat to sustainable agriculture in South and South-east Asia. Environ Int 35:647–654

    CAS  CrossRef  Google Scholar 

  • Chen X, Li H, Chan WF, Wu C, Wu F, Wu S, Wong MH (2012) Arsenite transporters expression in rice (Oryza sativa L.) associated with arbuscular mycorrhizal fungi (AMF) colonization under different levels of arsenite stress. Chemosphere 89:1248–1254

    CAS  CrossRef  Google Scholar 

  • Chen Y, Han YH, Cao Y, Zhu YG, Rathinasabapathi B, Ma LQ (2017) Arsenic transport in rice and biological solutions to reduce arsenic risk from rice. Front Plant Sci 8:268. https://doi.org/10.3389/fpls.2017.00268

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Choudhury S, Panda SK (2004) Induction of oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) both under lead and arsenic phytotoxicity. Curr Sci 87:342–348

    CAS  Google Scholar 

  • Clemens S, Ma JF (2016) Toxic heavy metal and metalloid accumulation in crop plants and foods. Annu Rev Plant Biol 67:489–512

    CAS  CrossRef  Google Scholar 

  • Dhankher OP, Pilon-Smits EAH, Meagher RB, Doty S (2011) Biotechnological approaches for phytoremediation. In: Altman A, Hasegawa PM (eds) Plant biotechnology and agriculture – prospect for the 21st century. Oxford Academic Press, Oxford, pp 309–328

    Google Scholar 

  • Dixit G, Singh AP, Kumar A, Mishra S, Dwivedi S, Kumar S, Trivedi PK, Pandey V, Tripathi RD (2016) Reduced arsenic accumulation in rice (Oryza sativa L.) shoot involves sulfur mediated improved thiol metabolism, antioxidant system and altered arsenic transporters. Plant Physiol Biochem 99:86–96

    CAS  CrossRef  Google Scholar 

  • Duan GL, Hu Y, Lui WJ, Kneer R, Zhao FJ, Zhu YG (2011) Evidence for a role of phytochelatins in regulating arsenic accumulation in rice grains. Environ Exp Bot 71:416–421

    CAS  Google Scholar 

  • Duan G, Kamiya T, Ishikawa S, Arao T, Fujiwara T (2012) Expressing ScACR3 in rice enhanced arsenite efflux and reduced arsenic accumulation in rice grains. Plant Cell Physiol 53:154–163

    CAS  CrossRef  Google Scholar 

  • Finnegan PM, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 3:1–18

    CrossRef  Google Scholar 

  • Gautam N, Verma PK, Verma S, Tripathi RD, Trivedi PK, Adhikari B, Chakrabarty D (2012) Genome-wide identification of rice class I metallothionein gene: tissue expression patterns and induction in response to heavy metal stress. Funct Integr Genom 12:635–647

    CAS  CrossRef  Google Scholar 

  • Hasanuzzaman M, Roychowdhury R, Karmakar J, Dey N, Nahar K, Fujita M (2015) Recent advances in biotechnology and genomic approaches for abiotic stress tolerance in crop plants. In: Thangadurai D, Sangeetha J (eds) Genomics and Proteomics: concepts, technologies and applications. Apple Academic Press, Canada, pp 333–366

    Google Scholar 

  • Horneman A, van Geen A, Kent DV, Mathe PE, Zheng Y, Dhar RK, O’Connell S, Hoque MA, Aziz Z, Shamsudduha M, Seddique AA, Ahmed KM (2004) Decoupling of As and Fe release to Bangladesh ground water under reducing conditions. Part I: evidence from sediment profiles. Geochim Cosmochim Acta 68:3459–3473

    CAS  CrossRef  Google Scholar 

  • Hu ZY, Zhu YG, Li M, Zhang LG, Cao ZH, Smith FA (2007) Sulfur (S)-induced enhancement of iron plaque formation in the rhizosphere reduces arsenic accumulation in rice (Oryza sativa L.) seedlings. Environ Pollut 147:387–393

    CAS  CrossRef  Google Scholar 

  • Huq SMI, Sultana S, Chakraborty G, Chowdhury MTA (2011) A mitigation approach to alleviate arsenic accumulation in rice through balanced fertilization. Appl Environ Soil Sci 2011:1–18. Article ID 835627. https://doi.org/10.1155/2011/835627

    CAS  CrossRef  Google Scholar 

  • IARC (2004) Some drinking-water disinfectants and contaminants, including arsenic. IARC Monogr Eval Carcinog Risks Hum 84:1–477

    Google Scholar 

  • Isayenkov SV, Maathuis FJM (2008) The Arabidopsis thaliana aquaglyceroporin AtNIP7;1 is a pathway for arsenite uptake. FEBS Lett 582:1625–1628

    CAS  CrossRef  Google Scholar 

  • Islam S, Rahman MM, Islam MR, Naidu R (2016) Arsenic accumulation in rice: consequences of rice genotypes and management practices to reduce human health risk. Environ Int 96:139–155

    CAS  CrossRef  Google Scholar 

  • Jayasumana C, Fonseka S, Fernando A, Jayalath K, Amarasinghe M, Siribaddana S, Gunatilake S, Paranagama P (2015) Phosphate fertilizer is a main source of arsenic in areas affected with chronic kidney disease of unknown etiology in Sri Lanka. Springer Plus 4:1. https://doi.org/10.1186/s40064-015-0868-z

    CAS  CrossRef  Google Scholar 

  • Khan MA, Islam MR, Panaullah GM, Duxbury JM, Jahiruddin M, Loeppert RH (2010) Accumulation of arsenic in soil and rice under wetland condition in Bangladesh. Plant Soil 333(1–2):263–274

    CAS  CrossRef  Google Scholar 

  • Lee CH, Wu CH, Syu CH, Jiang PY, Huang CC, Lee DY (2016) Effects of phosphorous application on arsenic toxicity to and uptake by rice seedlings in As-contaminated paddy soils. Geoderma 270:60–67

    CAS  CrossRef  Google Scholar 

  • Li R, Ago Y, Liu W, Mitani N, Feldmann J, McGrath SP, Ma JF, Zhao FJ (2009) The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol 150:2071–2080

    CAS  CrossRef  Google Scholar 

  • Liu C, Yu HY, Liu C, Li F, Xu X, Wang Q (2015) Arsenic availability in rice from a mining area: is amorphous iron oxide-bound arsenic a source or sink? Environ Pollut 199:95–101

    CAS  CrossRef  Google Scholar 

  • Lomax C, Liu W-J, Wu L, Xue K, Xiong J, Zhou J, McGrath SP, Meharg AA, Miller AJ, Zhao FJ (2012) Methylated arsenic species in plants originate from soil microorganisms. New Phytol 193:665–672

    CAS  CrossRef  Google Scholar 

  • Lu Y, Dong F, Deacon C, Hjun C, Raab A, Meharg AA (2010) Arsenic accumulation and phosphorus status in two rice (Oryza sativa L.) cultivars surveyed from fields in South China. Environ Pollut 158:1536–1541

    CAS  CrossRef  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448:209–212

    CAS  CrossRef  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Xu X-Y, Su Y-H, McGrath SP, Zhao FJ (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci 105:9931–9935

    CAS  CrossRef  Google Scholar 

  • Matsumoto S, Kasuga J, Taiki N, Makino T, Arao T (2015) Reduction of the risk of arsenic accumulation in rice by the water management and material application in relation to phosphate status. J Plant Interact 10(1):65–74

    CAS  CrossRef  Google Scholar 

  • Meharg AA (2004) Arsenic in rice e understanding a new disaster for South East Asia. Trends Plant Sci 9:490–498

    CrossRef  Google Scholar 

  • Meharg AA, Lombi E, Williams PN, Scheckel KG, Feldmann J, Raab A, Zhu Y, Islam R (2008) Speciation and localization of arsenic in white and brown rice grains. Environ Sci Technol 42:1051–1057

    CAS  CrossRef  Google Scholar 

  • Meng XY, Qin J, Wang LH, Duan GL, Sun GX, Wu HL, Chu CC, Ling HQ, Rosen BP, Zhu YG (2011) Arsenic biotransformation and volatilization in transgenic rice. New Phytol 191(1):49–56

    CAS  CrossRef  Google Scholar 

  • Moreno-Jiménez E, Meharg AA, Smolders E, Manzano R, Becerra D, Sanchez-Llerena J, Albarran A, Lopez-Pinero A (2014) Sprinkler irrigation of rice fields reduces grain arsenic but enhances cadmium. Sci Total Environ 485–486:468–473

    CrossRef  Google Scholar 

  • Nath S, Panda P, Mishra S, Dey M, Choudhury S, Sahoo L, Panda SK (2014) Arsenic stress in rice: redox consequences and regulation by iron. Plant Physiol Biochem 80:203–210

    CAS  CrossRef  Google Scholar 

  • Neumann RB, St Vincent AP, Roberts LC, Badruzzaman ABM, Ali MA, Harvey CF (2011) Rice field geochemistry and hydrology: an explanation for why groundwater irrigated fields in Bangladesh are net sinks of arsenic from groundwater. Environ Sci Technol 45(6):2072–2078

    CAS  CrossRef  Google Scholar 

  • Neupane G, Donahoe RJ (2013) Calcium-phosphate treatment of contaminated soil for arsenic immobilization. Appl Geochem 28:145–154

    CAS  CrossRef  Google Scholar 

  • Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci 99:13324–13329

    CAS  CrossRef  Google Scholar 

  • Phillips DHJ (1990) Arsenic in aquatic organisms: a review, emphasizing chemical speciation. Aquat Toxicol 16:151–186

    CAS  CrossRef  Google Scholar 

  • Raab A, Williams PN, Meharg A, Feldmann J (2007) Uptake and translocation of inorganic and methylated arsenic species by plants. Environ Chem 4:197–203

    CAS  CrossRef  Google Scholar 

  • Rahman MA, Hasegawa H (2011) High levels of inorganic arsenic in rice in areas where arsenic-contaminated water is used for irrigation and cooking. Sci Total Environ 409(22):4645–4655

    CAS  CrossRef  Google Scholar 

  • Rahman MM, Owens G, Naidu R (2009) Arsenic level in rice grain and assessment of daily dietary intake from rice in arsenic contaminated regions of Bangladesh - implications to groundwater irrigation. Environ Geochem Health 31:179–187

    Google Scholar 

  • Roberts LC, Hug SJ, Voegelin A, Dittmar J, Kretzschmar R, Wehrli B, Saha G, Badruzzaman ABM, Ali MA (2011) Arsenic dynamics in pore water of an intermittently, irrigated paddy field in Bangladesh. Environ Sci Technol 45:971–976

    CAS  CrossRef  Google Scholar 

  • Roychowdhury R, Karmakar J, Adak MK, Dey N (2013) Physio-biochemical and microsatellite based profiling of lowland rice (Oryza sativa L.) landraces for osmotic stress tolerance. Am J Plant Sci 4(12C):52–63

    CrossRef  Google Scholar 

  • Sanglard LMVP, Detmann KC, Martins SCV, Teixeira RA, Pereira LF, Sanglard ML, Fernie AR, Araujo WL, DaMatta FM (2016) The role of silicon in metabolic acclimation of rice plants challenged with arsenic. Environ Exp Bot 123:22–36

    CAS  CrossRef  Google Scholar 

  • Sharma S, Chatterjee S, Datta S, Mitra A, Vairale MG, Veer V, Chaurasia A, Gupta DK (2014) In vitro selection of plants for the removal of toxic metals from contaminated soil: role of genetic variation in phytoremediation. In: Gupta DK, Chattejee S (eds) Heavy metal remediation transport and accumulation in plants. Nova Science Publishers, New York, pp 155–177

    Google Scholar 

  • Shraim AM (2017) Rice is a potential dietary source of not only arsenic but also other toxic elements like lead and chromium. Arab J Chem 10:S3434–S3443

    CAS  CrossRef  Google Scholar 

  • Shri M, Chakrabarty D (2015) Arsenic in rice: a recent update. Res Rev J Bot Sci 4(2):8–11

    CAS  Google Scholar 

  • Shri M, Dave R, Diwedi S, Shukla D, Kesari R, Tripathi RD, Trivedi PK, Chakrabarty D (2014) Heterologous expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in rice leads to lower arsenic accumulation in grain. Sci Rep 4:5784. https://doi.org/10.1038/srep05784

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Singh RK, Anandhan S, Singh S, Patade VY, Ahmed Z, Pande V (2011) Metallothionein – like gene from Cicer microphyllum is regulated by multiple abiotic stresses. Protoplasma 248:839–847

    CAS  CrossRef  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    CAS  CrossRef  Google Scholar 

  • Somenahally AC, Hollister EB, Loeppert RH, Yan W, Gentry TJ (2011) Microbial communities in rice rhizosphere altered by intermittent and continuous flooding in fields with long-term arsenic application. Soil Biol Biochem 43:1220–1228

    CAS  CrossRef  Google Scholar 

  • Song W-Y, Yamaki T, Yamaji N, Ko D, Jung K-H, Fujii-Kashino M, An G, Martinoia E, Lee Y, Ma JF (2014) A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proc Natl Acad Sci 111:15699–15704

    CAS  CrossRef  Google Scholar 

  • Srivastava S, Akkarakaran JJ, Sounderajan S, Shrivastava M, Suprasanna P (2016) Arsenic toxicity in rice (Oryza sativa L.) is influenced by sulfur supply: impact on the expression of transporters and thiol metabolism. Geoderma 270:33–42

    CAS  CrossRef  Google Scholar 

  • Takahashi Y, Minamikawa R, Hattori KH, Kurishima K, Kihou N, Yuita K (2004) Arsenic behaviour in paddy fields during the cycle of flooded and non-flooded periods. Environ Sci Technol 38:1038–1044

    CAS  CrossRef  Google Scholar 

  • Talukder AS, Meisner CA, Sarkar MA, Islam MS (2011) Effect of water management, tillage options and phosphorus status on arsenic uptake in rice. Ecotoxicol Environ Safety 74:834–839

    Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165

    CAS  CrossRef  Google Scholar 

  • Tripathi P, Mishra A, Dwivedi S, Chakrabarty D, Trivedi PK, Singh RP, Tripathi RD (2012) Differential response of oxidative stress and thiol metabolism in contrasting rice genotypes for arsenic tolerance. Ecotoxicol Environ Saf 79:189–198

    CAS  CrossRef  Google Scholar 

  • Tripathi P, Tripathi RD, Singh RP, Dwivedi S, Goutam D, Shri M, Trivedi PK, Chakrabarty D (2013) Silicon mediates arsenic tolerance in rice (Oryza sativa L.) through lowering of arsenic uptake and improved antioxidant defence system. Ecol Eng 52:96–103

    CrossRef  Google Scholar 

  • Wailes EJ (2005) Rice: global trade, proptectionist policies, and the impact of trade liberalization. In: Aksoy MA, Beghin JC (eds) Global agricultural trade and developing countries. The World Bank, Washington, DC.

    Google Scholar 

  • Williams PN, Price AH, Raab A, Hossain SA, Feldmann J, Meharg AA (2005) Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environ Sci Technol 39:5531–5540

    CAS  CrossRef  Google Scholar 

  • Wu Z, Ren H, McGrath SP, Wu P, Zhao FJ (2011) Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol 157(1):498–508

    CAS  CrossRef  Google Scholar 

  • Xu XY, McGrath SP, Meharg AA, Zhao FJ (2008) Growing rice aerobically decreases arsenic accumulation. Environ Sci Technol 42:5574–5579

    CAS  CrossRef  Google Scholar 

  • Zhao FJ, Ma JF, McGrath SP, Meharg AA (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    CAS  CrossRef  Google Scholar 

  • Zhao F-J, McGrath SP, Mehrag AA (2010) Arsenic as food chain contaminant: mechanism of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559

    CAS  CrossRef  Google Scholar 

  • Zhao F-J, Harris E, Yan J, Ma J, Wu L, Liu W, McGrath SP, Zhou J, Zhu Y-G (2013) Arsenic methylation in soils and its relationship with microbial arsM abundance and diversity, and As speciation in rice. Environ Sci Technol 47:7147–7154

    CAS  CrossRef  Google Scholar 

  • Zhu Y-G, Yoshinaga M, Zhao F-J, Rosen BP (2014) Earth abides arsenic biotransformations. Annu Rev Earth Planet Sci 42:443–467

    CAS  CrossRef  Google Scholar 

Download references

Acknowledgement

This work is the outcome of the part of Extramural Research Project vide 38(1430)/17/EMR-II supported by Council of Scientific and Industrial Research (CSIR), New Delhi, India.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Roychowdhury, R., Khan, M.H., Choudhury, S. (2018). Arsenic in Rice: An Overview on Stress Implications, Tolerance and Mitigation Strategies. In: Hasanuzzaman, M., Nahar, K., Fujita, M. (eds) Plants Under Metal and Metalloid Stress. Springer, Singapore. https://doi.org/10.1007/978-981-13-2242-6_15

Download citation